Вопрос задан 07.11.2023 в 06:55. Предмет Математика. Спрашивает Бобпат Александр.

Автомобиль едет из пункта А в пункт Б и обратно. Первую половину пути из A в Б он едет со скоростью

60км/час, а остаток пути - со скоростью 30 км /час. Развернувшись в пункте Б, он половину времени на пути обратно ехал со скоростью 60км/час и остаток пути со скоростью 30 км /час. Определите на сколько средняя скорость на обратном пути больше средней скорости при движении из А в Б​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пафиков Виктор.

Ответ:

на 5 км/час

Пошаговое объяснение:

пусть путь S км, общее время t

тогда

средняя скорость на пути из А в Б

время на первую половину пути и на вторую половину пути

\displaystyle t_1 = \frac{S}{2} :60 = \frac{S}{120} \\\\t_2=\frac{S}{2} :30 = \frac{S}{60}

общее время

\displaystyle t= t_1+t_2=\frac{S}{120} +\frac{S}{60} =\frac{3S}{120} =\frac{S}{40}

тогда

\displaystyle v_{cp} = S/t = S:\frac{S}{40} = 40   (км/час)

средняя скорость на пути из Б в А

путь за первую половину времени и за вторую половину времени

\displaystyle S_1=\frac{t}{2} *60=30t\\\\S_2=\frac{t}{2} 30=15t

весь путь

\displaystyle S= S_1+S_2=30t+15t=45t

тогда

\displaystyle v_{cp}= S/t=45t:t=45  (км/час)

ответ

средняя скорость на обратном пути больше средней скорости при движении из А в Б​  на  (45-40)=5 (км/час)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, мы можем воспользоваться формулой для вычисления средней скорости:

Средняя скорость = Общий путь / Время

Давайте определим общий путь и время для каждого из участков пути.

Первая половина пути из A в B: - Скорость: 60 км/час - Время: t (пусть это будет t часов) - Путь: 60t км

Вторая половина пути из A в B: - Скорость: 30 км/час - Время: t (так как вторая половина пути) - Путь: 30t км

Теперь, когда автомобиль развернулся в пункте B и двигался обратно:

Первая половина времени на обратном пути с 60 км/час: - Скорость: 60 км/час - Время: t/2 (половина времени) - Путь: 60 * (t/2) км = 30t км

Вторая половина времени на обратном пути с 30 км/час: - Скорость: 30 км/час - Время: t/2 (половина времени) - Путь: 30 * (t/2) км = 15t км

Теперь мы можем найти общий путь и общее время для всего пути из A в B и обратно:

Общий путь = (60t + 30t) + (30t + 15t) = 135t км

Общее время = t + t + (t/2) + (t/2) = 3t часа

Теперь, чтобы найти среднюю скорость на всем пути (из A в B и обратно), мы используем формулу:

Средняя скорость = Общий путь / Общее время Средняя скорость = (135t км) / (3t часа)

Заметим, что t можно сократить:

Средняя скорость = 45 км/час

Теперь, чтобы найти среднюю скорость на обратном пути, мы можем использовать информацию о второй половине времени на обратном пути, где скорость составляла 30 км/час:

Средняя скорость на обратном пути = Путь на второй половине времени / Время на второй половине времени Средняя скорость на обратном пути = (15t км) / (t/2 часа) = 30 км/час

Теперь мы можем найти, на сколько средняя скорость на обратном пути больше средней скорости при движении из A в B:

Разница в скорости = Средняя скорость на обратном пути - Средняя скорость из A в B Разница в скорости = 30 км/час - 45 км/час = -15 км/час

Средняя скорость на обратном пути меньше средней скорости при движении из A в B на 15 км/час.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос