Приведение обыкновенных дробей к общему знаменателю. Сравнение обыкновенных дробей и смешанных
чисел. Урок 4 Является ли дробьрешением неравенства:не являетсяявляетсяОтветы на вопрос
Ответ:
не является
Пошаговое объяснение:
https://onlinemektep.org
Ответ: не является
Пошаговое объяснение: больше
, и меньше
.
Bringing Common Denominators for Fractions
To bring ordinary fractions to a common denominator, you need to find a common multiple of the denominators and then rewrite each fraction with that common denominator. Here are the steps to follow:
1. Identify the denominators of the fractions you want to bring to a common denominator. 2. Find the least common multiple (LCM) of those denominators. The LCM is the smallest number that is divisible by all the denominators. 3. Rewrite each fraction with the common denominator obtained in step 2. 4. Perform any necessary operations on the numerators.
Let's consider an example to illustrate this process. Suppose we want to bring the fractions 1/3 and 2/5 to a common denominator:
1. The denominators are 3 and 5. 2. The LCM of 3 and 5 is 15. 3. Rewrite each fraction with the common denominator 15: - 1/3 becomes 5/15 (multiply the numerator and denominator of 1/3 by 5). - 2/5 becomes 6/15 (multiply the numerator and denominator of 2/5 by 3). 4. Now, we can compare or perform operations on the fractions with the common denominator.
Comparing Fractions and Mixed Numbers
To compare fractions or mixed numbers, you can follow these steps:
1. If the fractions have the same denominator, compare the numerators. The fraction with the greater numerator is greater. 2. If the fractions have different denominators, bring them to a common denominator using the steps mentioned above. Then, compare the numerators as described in step 1. 3. If you are comparing mixed numbers, convert them to improper fractions first. To do this, multiply the whole number by the denominator, then add the numerator. The result becomes the new numerator, and the denominator remains the same. After converting to improper fractions, you can compare them using the steps mentioned above.
For example, let's compare the fractions 2/3 and 3/4:
1. The denominators are different, so we need to bring them to a common denominator. 2. The LCM of 3 and 4 is 12. 3. Rewrite each fraction with the common denominator 12: - 2/3 becomes 8/12 (multiply the numerator and denominator of 2/3 by 4). - 3/4 becomes 9/12 (multiply the numerator and denominator of 3/4 by 3). 4. Now, we can compare the fractions: 8/12 is less than 9/12, so 2/3 is less than 3/4.
Solving Inequalities with Fractions
To determine if a fraction is a solution to an inequality, you need to substitute the fraction into the inequality and check if the resulting statement is true or false.
For example, let's consider the inequality 2/3 < 5/6. To check if 2/3 is a solution, substitute it into the inequality:
2/3 < 5/6
This statement is true, so 2/3 is a solution to the inequality.
On the other hand, if we consider the inequality 2/3 > 5/6 and substitute 2/3 into it:
2/3 > 5/6
This statement is false, so 2/3 is not a solution to the inequality.
In conclusion, whether a fraction is a solution to an inequality depends on whether the inequality is true or false when the fraction is substituted into it.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
