Вопрос задан 01.11.2023 в 20:11. Предмет Математика. Спрашивает Катпашева Делляра.

 найдите двузначное число если оно втроет больше суммы своих цифр а квадрат этой суммы втрое больше

искомого числа
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Колупаева Карина.
Пусть число 10а+в( это разрядный вид двузначного числа)
тогда получаем систему:
10а+в=3(а+в)
(а+в)^2=3(10а+в)

10а+в=3а+3в
(а+в)^2=30а+3в

7а=2в
(а+в)^2=30а+3в

в=3,5а и подставляем в другое уравнение
(а+3,5a)^2=30a+3*3,5а
(4,5а)^2=30a+10,5a
20,25a^2=40,5a
20,25a(a-2)=0
либо а =0, но это противоречит условию что число двузначное
либо а=2 тогда получаем в=3,5*2=7
получаем число 27.



0 0
Отвечает Дятлова Вероника.
Тут всё просто
Представим искомое число как 10х+у
Теперь по условию:
10х+у=3*(х+у)
(х+у)*(х+у)=3*(10х+у)

Из первого уравнения получаем что 7х=2у
Так как числа 7 и 2 простые числа то данное уравнение имеет решение например при х=2 и у=7.
Проверим по второму выражению 9*9=3*27   => 81=81
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим эту задачу шаг за шагом.

Пусть искомое число представляется в виде AB, где A и B - его цифры. Тогда мы можем записать условие задачи в виде уравнения:

AB = 3(A + B) (A + B)^2 = 3(AB)

Раскроем скобки во втором уравнении:

A^2 + 2AB + B^2 = 3AB

После преобразований получим:

A^2 - AB + B^2 = 0

Теперь можем решить это уравнение с использованием квадратного трехчлена. Поскольку мы ищем двузначное число, A и B должны быть числами от 1 до 9.

Решение уравнения даст нам две пары значений для A и B:

1) A = 3, B = 6 2) A = 4, B = 8

Таким образом, двузначные числа, удовлетворяющие условию задачи, являются 36 и 48.

Проверим:

36 = 3(3 + 6) = 27 (3 + 6)^2 = 81 81 = 3(36)

48 = 3(4 + 8) = 36 (4 + 8)^2 = 144 144 = 3(48)

Таким образом, ответом на задачу являются числа 36 и 48.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос