
1) Реши уравнения: 1) 7(x + 8) – 25 = 66 2) (y + 46) : 3 = 18 3) 9(5x + 13) = 252 2) Запиши
наибольший общий делитель (НОД) чисел 18 и 24, 12 и 9, 12 и 20. 3) Найди наименьшее общее кратное (НОК) чисел 3 и 4; 16 и 3; 12 и 18. ппжпжжпжпжпжпжпжпжпжпжжп в картинке с тетради

Ответы на вопрос





1) Решение уравнений:
1) 7(x + 8) – 25 = 66
To solve this equation, we can follow these steps:
Step 1: Distribute the 7 to the terms inside the parentheses: 7x + 56 - 25 = 66
Step 2: Combine like terms: 7x + 31 = 66
Step 3: Subtract 31 from both sides of the equation: 7x = 66 - 31 7x = 35
Step 4: Divide both sides of the equation by 7: x = 35/7 x = 5
Therefore, the solution to the equation 7(x + 8) – 25 = 66 is x = 5.
2) (y + 46) / 3 = 18
To solve this equation, we can follow these steps:
Step 1: Multiply both sides of the equation by 3 to eliminate the fraction: 3 * (y + 46) / 3 = 18 * 3 y + 46 = 54
Step 2: Subtract 46 from both sides of the equation: y + 46 - 46 = 54 - 46 y = 8
Therefore, the solution to the equation (y + 46) / 3 = 18 is y = 8.
3) 9(5x + 13) = 252
To solve this equation, we can follow these steps:
Step 1: Distribute the 9 to the terms inside the parentheses: 45x + 117 = 252
Step 2: Subtract 117 from both sides of the equation: 45x = 252 - 117 45x = 135
Step 3: Divide both sides of the equation by 45: x = 135/45 x = 3
Therefore, the solution to the equation 9(5x + 13) = 252 is x = 3.
2) Наибольший общий делитель (НОД) и наименьшее общее кратное (НОК):
1) НОД чисел 18 и 24:
To find the greatest common divisor (НОД) of two numbers, we can use the Euclidean algorithm. The Euclidean algorithm states that the greatest common divisor of two numbers is equal to the greatest common divisor of the remainder when the larger number is divided by the smaller number.
Using this algorithm, we can find the НОД of 18 and 24 as follows:
Step 1: Divide 24 by 18: 24 = 1 * 18 + 6
Step 2: Divide 18 by 6: 18 = 3 * 6 + 0
Since the remainder is 0, the НОД of 18 and 24 is the last non-zero remainder, which is 6.
Therefore, the НОД of 18 and 24 is 6.
2) НОД чисел 12 и 9:
Using the same Euclidean algorithm, we can find the НОД of 12 and 9 as follows:
Step 1: Divide 12 by 9: 12 = 1 * 9 + 3
Step 2: Divide 9 by 3: 9 = 3 * 3 + 0
Again, the remainder is 0, so the НОД of 12 and 9 is 3.
Therefore, the НОД of 12 and 9 is 3.
3) НОД чисел 12 и 20:
Applying the Euclidean algorithm to find the НОД of 12 and 20:
Step 1: Divide 20 by 12: 20 = 1 * 12 + 8
Step 2: Divide 12 by 8: 12 = 1 * 8 + 4
Step 3: Divide 8 by 4: 8 = 2 * 4 + 0
The remainder is 0, so the НОД of 12 and 20 is 4.
Therefore, the НОД of 12 and 20 is 4.
Наименьшее общее кратное (НОК):
1) НОК чисел 3 и 4:
The least common multiple (НОК) of two numbers can be found by dividing their product by their greatest common divisor (НОД).
To find the НОК of 3 and 4:
Step 1: Calculate the product of the two numbers: 3 * 4 = 12
Step 2: Divide the product by their НОД: 12 / 1 = 12
Therefore, the НОК of 3 and 4 is 12.
2) НОК чисел 16 и 3:
To find the НОК of 16 and 3:
Step 1: Calculate the product of the two numbers: 16 * 3 = 48
Step 2: Divide the product by their НОД: 48 / 1 = 48
Therefore, the НОК of 16 and 3 is 48.
3) НОК чисел 12 и 18:
To find the НОК of 12 and 18:
Step 1: Calculate the product of the two numbers: 12 * 18 = 216
Step 2: Divide the product by their НОД: 216 / 6 = 36
Therefore, the НОК of 12 and 18 is 36.
I apologize, but I am unable to view or interpret the image you mentioned in your question. If you have any other questions or need further assistance, feel free to ask!


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili