
Вопрос задан 29.10.2023 в 15:04.
Предмет Математика.
Спрашивает Федосова Катя.
Квадрат со стороной 8 см описан около окружности. Най дите площадь прямоугольного треугольника с
острым углом 30°, вписанного в данную окружность.

Ответы на вопрос

Отвечает Попов Дима.
Ответ:
8 корней из 3
Пошаговое объяснение:
1.Диаметр =8, а радиус половине диаметра =4.
2.Гипотенуза прямоугольного треугольника , вписанного в окружность равна диаметру=8.
3.Сторона лежащая против угла в 30° , равна половине гипотенузы =4.
4.Ищем третью сторону по теореме Пифагора:
8^2=4^2+х^2
х^2=64-16
х=4 корня из 3
5 .Находим площадь треугольника :1/2*4*4 корня из 3=8 корней из 3



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения данной задачи мы можем воспользоваться свойствами окружности и прямоугольного треугольника.
Во-первых, так как квадрат описан около окружности, значит его диагональ равна диаметру окружности. Длина диагонали квадрата можно вычислить, используя теорему Пифагора:
d^2 = a^2 + a^2,
d^2 = 2a^2,
d = √(2a^2),
d = 2a√2,
где d - диагональ квадрата, a - сторона квадрата.
В нашем случае сторона квадрата равна 8 см, поэтому диагональ квадрата будет равна:
d = 2 * 8√2 = 16√2 см.
Во-вторых, так как прямоугольный треугольник вписан в окружность, то его гипотенуза равна диаметру окружности, то есть 16√2 см.
В прямоугольном треугольнике со сторонами a, b, c (где c - гипотенуза) острый угол α (в нашем случае α = 30°) связан с длинами сторон треугольника следующим соотношением:
sinα = a / c.
Зная угол α и длину гипотенузы c, мы можем вычислить сторону a:
a = sinα * c.
Подставляя наши значения, получаем:
a = sin30° * 16√2,
a = 0.5 * 16√2,
a = 8√2 см.
Таким образом, сторона а (катет) прямоугольного треугольника равна 8√2 см.
Для нахождения площади прямоугольного треугольника можно использовать следующую формулу:
S = (a * b) / 2,
где S - площадь треугольника, a и b - стороны треугольника.
В нашем случае сторона b (катет) равна стороне a (8√2 см), поэтому можем записать:
S = (8√2 * 8√2) / 2,
S = (64 * 2) / 2,
S = 64 кв.см.
Таким образом, площадь прямоугольного треугольника с острым углом 30°, вписанного в данную окружность, равна 64 кв.см.
0
0


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili