Вопрос задан 24.10.2023 в 17:26. Предмет Математика. Спрашивает Макарова Мария.

28 - 9m = -8 - 10m63 - 8n =n25 - 9y = 5y + 11​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Владислав Владислав.

Ответ:

.,.,.,.,.,.,.,.,.,.,.,.,. УДАЧИИИИ.,.,.,..,.,.,.,.,.,.,.,.,

Пошаговое объяснение:

,


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the given equation, let's break it down step by step:

28 - 9m = -8 - 10m 63 + 8n = n 25 - 9y = 5y + 11

Solving the First Equation: 28 - 9m = -8 - 10m

To solve this equation, we need to isolate the variable "m" on one side of the equation.

First, let's simplify both sides of the equation: 28 - 9m = -8 - 10m

Combining like terms, we have: 28 + 8 = -9m - 10m 36 = -19m

Next, we can isolate "m" by dividing both sides of the equation by -19: 36 / -19 = m m ≈ -1.89

Therefore, the solution to the first equation is m ≈ -1.89.

Solving the Second Equation: 63 + 8n = n

To solve this equation, we need to isolate the variable "n" on one side of the equation.

First, let's simplify both sides of the equation: 63 + 8n = n

To isolate "n," we can subtract 8n from both sides of the equation: 63 = n - 8n

Simplifying further, we have: 63 = -7n

Next, we can isolate "n" by dividing both sides of the equation by -7: 63 / -7 = n n = -9

Therefore, the solution to the second equation is n = -9.

Solving the Third Equation: 25 - 9y = 5y + 11

To solve this equation, we need to isolate the variable "y" on one side of the equation.

First, let's simplify both sides of the equation: 25 - 9y = 5y + 11

To isolate "y," we can move all the terms with "y" to one side of the equation and the constant terms to the other side: 25 - 11 = 5y + 9y

Simplifying further, we have: 14 = 14y

Next, we can isolate "y" by dividing both sides of the equation by 14: 14 / 14 = y y = 1

Therefore, the solution to the third equation is y = 1.

In summary, the solutions to the given equations are: m ≈ -1.89, n = -9, y = 1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос