Вопрос задан 23.10.2023 в 21:43. Предмет Математика. Спрашивает Елизавета Лиза.

Осью симетрии графика функции y=ax*2 -6x-1 является прямая x=3 Найдите a Срочно

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Болонева Елена.

На оси параболы лежит её вершина, х(вершины)=6/(2а)=3/а. Получаем уравнение:


3/а=3, решаем с помощью прлпорции и получаем, что а=1.


Ответ: 1.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения оси симметрии графика функции y=ax^2 - 6x - 1 необходимо найти значение x, при котором функция равна нулю. То есть, решим уравнение ax^2 - 6x - 1 = 0.

Так как ось симметрии графика функции является вертикальной прямой, то она будет иметь уравнение вида x = c, где c - это значение x, при котором функция равна нулю.

Из условия задачи известно, что ось симметрии графика функции равна x = 3. Значит, решая уравнение ax^2 - 6x - 1 = 0, мы должны получить x = 3.

Подставим x = 3 в уравнение и решим его: a * 3^2 - 6 * 3 - 1 = 0 9a - 18 - 1 = 0 9a - 19 = 0 9a = 19 a = 19/9

Таким образом, значение a равно 19/9.

Ответ: a = 19/9.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос