
Теплоход за два дня прошёл 375 км. в первый день он был в пути 8 ч, а во второй 7 ч. Какое
расстояние он прошёл в каждый из дней, если шёл с одинаковой средней скоростью?

Ответы на вопрос

375 : 15 = 25 км/час - скорость
25 х 8 = 200 км - первый день
25 х 7 = 175 км - второй день



8*25=200 км (прошел в первый день)
7*25=175 км (прошел во второй день)



Problem Analysis
We are given that a boat traveled a total distance of 375 km in two days. On the first day, it was in motion for 8 hours, and on the second day, it was in motion for 7 hours. We need to determine the distance traveled each day, assuming the boat maintained a constant average speed.
Solution
To find the distance traveled each day, we can use the formula:
Distance = Speed × Time
Let's assume the boat traveled x km on the first day and y km on the second day. Since the boat traveled at the same average speed on both days, we can set up the following equations:
x = Speed × 8 (Equation 1)
y = Speed × 7 (Equation 2)
We can solve these equations simultaneously to find the values of x and y.
Solving the Equations
To solve the equations, we can divide Equation 1 by Equation 2:
(x / y) = (Speed × 8) / (Speed × 7)
Simplifying the equation:
(x / y) = 8 / 7
Cross-multiplying:
7x = 8y
Rearranging the equation:
x = (8y) / 7 (Equation 3)
Now, we can substitute Equation 3 into Equation 1:
(8y) / 7 = Speed × 8
Simplifying the equation:
y = (7 × Speed) / 8 (Equation 4)
Finding the Distance Traveled Each Day
We have two equations, Equation 3 and Equation 4, that relate the distances traveled each day to the average speed of the boat. We can use these equations to find the values of x and y.
Let's substitute Equation 4 into Equation 3:
x = (8 × [(7 × Speed) / 8]) / 7
Simplifying the equation:
x = Speed
Therefore, the distance traveled on the first day (x) is equal to the average speed of the boat.
Similarly, substituting Equation 4 into Equation 4:
y = (7 × Speed) / 8
Therefore, the distance traveled on the second day (y) is equal to (7/8) times the average speed of the boat.
Answer
Based on the given information, the boat traveled x km on the first day and y km on the second day, where:
x = Speed
y = (7/8) × Speed
Since the boat traveled a total distance of 375 km in two days, we can set up the following equation:
x + y = 375
Substituting the values of x and y:
Speed + (7/8) × Speed = 375
Combining like terms:
(15/8) × Speed = 375
Simplifying the equation:
Speed = (375 × 8) / 15
Calculating the value of Speed:
Speed = 200 km/h
Therefore, the boat traveled 200 km on the first day and (7/8) × 200 = 175 km on the second day.
Conclusion
The boat traveled 200 km on the first day and 175 km on the second day, assuming it maintained a constant average speed.
Please let me know if I can help you with anything else.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili