
|x + 3| + |x - 1| = 4


Ответы на вопрос

х=1
|1+3|+|1-1|=4



2х-1=4-3
х=1
|1+3|+|1-1|=4



To solve the equation |x + 3| + |x - 1| = 4, you need to consider different cases based on the sign of the expressions inside the absolute value bars.
Case 1: x + 3 is non-negative, and x - 1 is non-negative. In this case, you have two absolute values without negation, so the equation becomes:
x + 3 + x - 1 = 4
Combine like terms:
2x + 2 = 4
Subtract 2 from both sides:
2x = 4 - 2 2x = 2
Divide by 2:
x = 1
Case 2: x + 3 is non-negative, and x - 1 is negative. In this case, you have:
x + 3 - (x - 1) = 4
Simplify:
x + 3 - x + 1 = 4
Combine like terms:
4 = 4
This equation is always true, so it doesn't provide any new solutions.
Case 3: x + 3 is negative, and x - 1 is non-negative. In this case, you have:
-(x + 3) + (x - 1) = 4
Simplify:
-x - 3 + x - 1 = 4
Combine like terms:
-4 = 4
This equation is never true, so it doesn't provide any solutions.
Case 4: x + 3 is negative, and x - 1 is negative. In this case, you have two absolute values with negation, so the equation becomes:
-(x + 3) - (x - 1) = 4
Simplify:
-x - 3 - x + 1 = 4
Combine like terms:
-2x - 2 = 4
Add 2 to both sides:
-2x = 4 + 2 -2x = 6
Divide by -2:
x = -3
So, there are two solutions to the equation |x + 3| + |x - 1| = 4:
x = 1 (from Case 1) x = -3 (from Case 4)


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili