| 1 + | 3 + x || -2 = 0
Ответы на вопрос
To solve the equation |1 + |3 + x|| - 2 = 0, you'll need to consider the absolute values.
Let's break it down step by step:
Start with the innermost absolute value: |3 + x|.
- If 3 + x is positive, then |3 + x| = 3 + x.
- If 3 + x is negative, then |3 + x| = -(3 + x).
Now, we have |1 + (3 + x)| - 2 = 0:
- If 3 + x is positive, this becomes |1 + (3 + x)| - 2 = (1 + (3 + x)) - 2 = 4 + x - 2 = x + 2.
- If 3 + x is negative, this becomes |1 + (3 + x)| - 2 = -(1 + (3 + x)) - 2 = -4 - x - 2 = -x - 6.
Now we have two possibilities:
If 3 + x is positive: x + 2 = 0
If 3 + x is negative: -x - 6 = 0
Let's solve each equation:
If 3 + x is positive: x + 2 = 0 Subtract 2 from both sides: x = -2
If 3 + x is negative: -x - 6 = 0 Add x to both sides: -6 = x
So, the solutions to the equation |1 + |3 + x|| - 2 = 0 are x = -2 and x = -6.
To solve the equation |1 + |3 + x|| - 2 = 0, you can break it down into cases based on the inner absolute value and the outer absolute value. Here's how you can do it step by step:
Case 1: 3 + x is non-negative (i.e., 3 + x ≥ 0)
In this case, the inner absolute value simplifies to:
|3 + x| = 3 + x
So the equation becomes:
|1 + (3 + x)| - 2 = 0
Simplify further:
|4 + x| - 2 = 0
Now, add 2 to both sides:
|4 + x| = 2
This gives us two possible equations:
- 4 + x = 2
- 4 + x = -2
Solve each equation separately:
4 + x = 2 Subtract 4 from both sides: x = 2 - 4 x = -2
4 + x = -2 Subtract 4 from both sides: x = -2 - 4 x = -6
So for this case, there are two solutions: x = -2 and x = -6.
Case 2: 3 + x is negative (i.e., 3 + x < 0)
In this case, the inner absolute value simplifies to:
|3 + x| = -(3 + x)
So the equation becomes:
|1 - (3 + x)| - 2 = 0
Simplify further:
|1 - 3 - x| - 2 = 0
|(-2 - x)| - 2 = 0
Now, add 2 to both sides:
|(-2 - x)| = 2
This gives us two possible equations:
- -2 - x = 2
- -2 - x = -2
Solve each equation separately:
-2 - x = 2 Add 2 to both sides: -x = 2 + 2 -x = 4 Divide by -1 (to isolate x): x = -4
-2 - x = -2 Add 2 to both sides: -x = -2 + 2 -x = 0 Divide by -1 (to isolate x): x = 0
So for this case, there are two more solutions: x = -4 and x = 0.
In summary, the equation |1 + |3 + x|| - 2 = 0 has four solutions: x = -2, x = -6, x = -4, and x = 0.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
