Вопрос задан 07.10.2023 в 01:36. Предмет Математика. Спрашивает Малыхина Анастасия.

Диагонали прямоугольника ABCD пересекаются в точке O угол acb равный 40 градусов Найдите угол COD

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хомяк Лиза.

Ответ:

Пошаговое объяснение:

Δ СОD - равнобедренный(диагонали прямоугольника = и точкой пересечения делятся пополам). Тогда ∠OCD=∠ODC=90°-40°=50°

Следовательно∠COD=180°-50°*2=180°-100°=80°

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти угол COD в прямоугольнике ABCD, нам потребуется знать, как связаны углы в этом прямоугольнике.

Известно, что угол ACB равен 40 градусов. Поскольку прямоугольник ABCD имеет две пары противоположных равных углов, то:

  1. Угол CAD также равен 40 градусам, так как это вертикально противоположный угол к углу ACB.

  2. Угол ABC равен 90 градусам, так как это угол в прямоугольнике.

  3. Теперь, чтобы найти угол COD, мы можем воспользоваться фактом, что сумма углов вокруг точки равна 360 градусам. Таким образом:

Угол COD = 360 - (угол CAD + угол ACB) Угол COD = 360 - (40 + 40) Угол COD = 360 - 80 Угол COD = 280 градусов

Таким образом, угол COD равен 280 градусов.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос