
1) (9х-4)+(15х-5)=18-(25-22х) 2) (10х+6)-(9-9х)+(8-11х)=-193) 7(х-1)-3(2х+1)=-х-154)
(х^2+4x-8)-(7x-2x^2-5)=3x^2-(4x+4)

Ответы на вопрос

1)
(9х-4)+(15х-5)=18-(25-22х)
9х-4+15х-5=18-25+22х
9х+15х-22х=18-25+5+4
2х=2
х=2/2
х=1
2)
(10х+6)-(9-9х)+(8-11х)=-19
10х+6-9+9х+8-11х=-19
10x+9x-11x=-19-8+9-6
8x=-24
x=-24/8
x=-3
3)
7*(х-1)-3*(2х+1)=-х-15
7x-7-6x-3=-x-15
7x-6x+x=-15+3+7
2x=-5
x=-5/2
x=-2,5
4)
(x²+4x-8)-(7x-2x²-5)=3x²-(4x+4)
x²+4x-8-7x+2x²+5=3x²-4x-4
x²+2x²+4x-7x-8+5=3x²-4x-4
3x²-3x-3=3x²-4x-4
3x²-4x-4=3x²-3x-3
3x²-4x-3x²+3x=-3+4
3x²-3x²-4x+3x=-3+4
-1x=1
x=1/(-1)
x=-1



Let's solve each of these equations step by step:
- (9x - 4) + (15x - 5) = 18 - (25 - 22x)
First, simplify both sides of the equation:
24x - 9 = 18 - 25 + 22x
Now, move like terms to the same side of the equation:
24x - 22x = 18 - 25 + 9
2x = 2
Now, divide both sides by 2 to isolate x:
x = 2/2
x = 1
So, the solution to the first equation is x = 1.
- (10x + 6) - (9 - 9x) + (8 - 11x) = -19
First, simplify both sides of the equation:
10x + 6 - 9 + 9x + 8 - 11x = -19
Now, combine like terms:
(10x + 9x - 11x) + (6 - 9 + 8) = -19
(8x - 19) = -19
Now, add 19 to both sides of the equation to isolate x:
8x = 0
Finally, divide both sides by 8 to find the value of x:
x = 0
So, the solution to the second equation is x = 0.
- 7(x - 1) - 3(2x + 1) = -x - 15
Let's distribute the constants:
7x - 7 - 6x - 3 = -x - 15
Now, combine like terms:
(7x - 6x + x) - 7 - 3 = -15
2x - 10 = -15
Now, add 10 to both sides of the equation to isolate x:
2x = -5
Finally, divide both sides by 2 to find the value of x:
x = -5/2
So, the solution to the third equation is x = -5/2.
- (x^2 + 4x - 8) - (7x - 2x^2 - 5) = 3x^2 - (4x + 4)
Let's simplify both sides of the equation step by step:
x^2 + 4x - 8 - 7x + 2x^2 + 5 = 3x^2 - 4x - 4
Now, combine like terms on both sides:
(1x^2 + 2x^2 + 3x^2) + (4x + 7x + 4x) + (-8 + 5) = -4
6x^2 + 15x - 3 = -4
Now, add 4 to both sides of the equation to isolate the terms with x:
6x^2 + 15x - 3 + 4 = 0
6x^2 + 15x + 1 = 0
Now, you can solve this quadratic equation using the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 6, b = 15, and c = 1. Plug these values into the quadratic formula:
x = (-15 ± √(15^2 - 4(6)(1))) / (2(6))
x = (-15 ± √(225 - 24)) / 12
x = (-15 ± √201) / 12
So, the solutions to the fourth equation are x = (-15 + √201)/12 and x = (-15 - √201)/12.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili