Вопрос задан 28.09.2023 в 15:40. Предмет Математика. Спрашивает Ситников Миша.

сколько существует пятизначных чисел, состоящих только из цифр 5 и 6, если известно, что каждая из

них встречается хотя бы один раз​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузнецова Софья.

Ответ:

вроде 8 , я тоже делала эту олимпиаду)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, мы можем воспользоваться методом перебора.

Пятизначное число может содержать только цифры 5 и 6, и оно должно содержать хотя бы одну из этих цифр. Мы можем подойти к этой задаче, рассматривая количество способов, как можно разместить цифры 5 и 6 в числе.

Сначала давайте рассмотрим количество способов разместить цифры 5 и 6 в пятизначном числе без ограничений. Это равно 2^5, так как для каждой из пяти позиций мы можем выбрать либо 5, либо 6.

Теперь давайте вычислим количество способов, при которых ни одна из цифр (5 или 6) не встречается. Это означает, что мы можем использовать только одну из цифр (5 или 6). Есть два варианта: либо мы используем только цифру 5, либо мы используем только цифру 6. Следовательно, это 2 варианта.

Теперь мы можем вычислить количество пятизначных чисел, состоящих только из цифр 5 и 6, с учетом условия, что каждая из них встречается хотя бы один раз, вычитая количество чисел без этого условия:

2^5 - 2 = 32 - 2 = 30.

Итак, существует 30 пятизначных чисел, состоящих только из цифр 5 и 6, при условии, что каждая из них встречается хотя бы один раз.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос