Вопрос задан 27.09.2023 в 23:39. Предмет Математика. Спрашивает Шестакова Владлена.

1)Найдите сумму возможных значений n, при которых дробь 12/n+7 является неправильной. 2) Найдите

сумму M+N, если M-2/12- наибольшая правильная дробь, N+7/14-наименьшая неправильная дробь. 3)Найдите произведение MN, если дроби M-3/17 и 18/N+5 равны. Пожалуйста помогите.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шталь Альберт.

Ответ:

1) n=0, 1...5 2) 20 3) 252

Пошаговое объяснение:

1) 12-7=5

n=[0, 1, 2, 3, 4, 5]

2) (12+2-1)+(14-7)=13+7=20

3) (17+1+3)*(17-5)=21*12=252

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте рассмотрим ваши вопросы по очереди:

  1. Найдите сумму возможных значений n, при которых дробь 12/n+7 является неправильной.

Дробь называется неправильной, если числитель больше или равен знаменателю. В данном случае, нам нужно найти значения n, при которых 12/n + 7 является неправильной дробью. Это означает, что 12/n должно быть больше или равно 7. Таким образом:

12/n >= 7

Для того чтобы найти сумму всех возможных значений n, удовлетворяющих этому условию, давайте сначала найдем, при каких значениях n это неравенство выполняется:

12/n >= 7

Умножим обе стороны на n (при условии, что n положительно, чтобы не менять направление неравенства):

12 >= 7n

Теперь делим обе стороны на 7:

12/7 >= n

Таким образом, n должно быть меньше или равно 12/7. Значения n в интервале от 0 до 12/7 будут удовлетворять условию. Теперь найдем сумму всех таких значений:

Сумма = 1 + 2 + 3 + ... + 12/7

Чтобы найти сумму арифметической прогрессии, можно воспользоваться формулой:

Сумма = (n * (n + 1)) / 2

В данном случае, n = 12/7. Подставим это значение:

Сумма = (12/7 * (12/7 + 1)) / 2

Сумма = (12/7 * (19/7)) / 2

Сумма = (228/49) / 2

Сумма = 228/98

Сумма = 114/49

Таким образом, сумма возможных значений n равна 114/49.

  1. Найдите сумму M+N, если M-2/12- наибольшая правильная дробь, N+7/14-наименьшая неправильная дробь.

Для нахождения M и N, нам нужно найти наибольшую правильную дробь и наименьшую неправильную дробь.

Наибольшая правильная дробь будет иметь максимальное значение числителя при фиксированном знаменателе. Знаменатель в данном случае - 12. Таким образом, наибольшая правильная дробь будет:

M = (12 - 2) / 12 = 10/12 = 5/6

Наименьшая неправильная дробь будет иметь числитель больший знаменателя. Знаменатель в данном случае - 14. Таким образом, наименьшая неправильная дробь будет:

N = (7 + 14) / 14 = 21/14 = 3/2

Теперь, чтобы найти сумму M и N:

M + N = (5/6) + (3/2)

Для сложения дробей с разными знаменателями, нужно привести их к общему знаменателю. Общий знаменатель для 6 и 2 - это 6. Приведем дроби к общему знаменателю:

M + N = (5/6) + (3/2) = (5/6) + (3/2) * (3/3) = (5/6) + (9/6)

Теперь сложим их:

M + N = (5/6) + (9/6) = (5 + 9) / 6 = 14/6 = 7/3

Таким образом, сумма M и N равна 7/3.

  1. Найдите произведение MN, если дроби M-3/17 и 18/N+5 равны.

Для того чтобы найти произведение MN, если дроби M - 3/17 и 18/N + 5 равны, нужно приравнять их друг к другу:

M - 3/17 = 18/N + 5

Теперь давайте решим это уравнение относительно M и N.

Сначала выразим M:

M = 18/N + 5 + 3/17

Теперь выразим N:

18/N = M - 5 - 3/17

N = 18 / (M - 5 - 3/17)

Теперь мы можем найти произведение MN:

MN = (18 / (M - 5 - 3/17)) * M

MN = (18M) / (M - 5 - 3/17)

Теперь у нас есть выражение для произведения MN в зависимости от M. Но у нас нет конкретного значения M, поэтому мы не можем точно найти произведение MN без знания значения M. Если у вас есть конкретное значение M, то можно подставить его в уравнение и найти произведение MN.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос