Вопрос задан 27.09.2023 в 22:19. Предмет Математика. Спрашивает Гайворонский Дима.

Дано AE=EB, CF=FD BC=12м AD=16м найти EF

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Долгова Мария.

AE=EB, CF=FD => EF- средняя линяя трапеции. EF= (BC+AD):2=> EF= (12+20):2=32:2=16. Ответ: EF= 16 метров

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи нам нужно использовать теорему Пифагора, так как у нас есть прямоугольный треугольник ABC (из-за того, что AE = EB и CF = FD). Давайте обозначим следующие величины:

BC = 12 м AD = 16 м

Поскольку AE = EB, то мы можем разделить отрезок BC на две равные части, исходя из чего получим:

BE = CE = 12 м / 2 = 6 м

Теперь мы имеем следующие стороны треугольника ABC:

AB = AE + EB = 16 м + 6 м = 22 м BC = 12 м AC = ?

Давайте найдем длину стороны AC, используя теорему Пифагора:

AC^2 = AB^2 + BC^2 AC^2 = 22^2 + 12^2 AC^2 = 484 + 144 AC^2 = 628

Теперь найдем квадратный корень из AC^2:

AC = √628 AC ≈ 25.1 м (округлим до одного знака после запятой)

Теперь у нас есть стороны треугольника AC, BC и CF, и мы знаем, что CF = FD. Мы можем использовать подобие треугольников для нахождения длины EF:

EF / AC = CF / BC

Подставим известные значения:

EF / 25.1 м = (12 м - 6 м) / 12 м EF / 25.1 м = 6 м / 12 м

Теперь решим для EF:

EF / 25.1 м = 0.5

Умножим обе стороны на 25.1 м:

EF = 0.5 * 25.1 м EF ≈ 12.55 м

Итак, длина отрезка EF составляет около 12.55 метров.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос