
1280. 1) [10(x + y) = 30 + 8x, 9(x - y) = -49-8y; Y 2) (21(x - y) = 48 + 20x, 19(y + x) = 100 +
12y.

Ответы на вопрос

1)
Ответ: ( - 5 ; 4 )
2)
Ответ: ( 6 ; - 2 )



Пошаговое объяснение:
№1
{10(х + у) = 30 + 8х
{9(х - у) = -49 - 8у
{10х + 10у = 30 + 8х
{9х - 9у = -49 - 8у
{10х + 10у - 8х = 30
{9х - 9у + 8у = -49
{2х + 10у = 30
{9х - у = -49
{2х + 10у = 30
{у = 9х + 49
1)
2х + 10у = 30
2х + 10(9х + 49) = 30
2х + 90х + 490 = 30
92х = 30 - 490
92х = -460
х = -460 : 92
х = -5
2)
у = 9х + 49
у = 9 * (-5) + 49
у = -45 + 49
у = 4
(-5; 4)
№2
{21(х - у) = 48 + 20х
{19(у + х) = 100 + 12у
{21х - 21у = 48 + 20х
{19у + 19х = 100 + 12у
{21х - 21у - 20х = 48
{19у + 19х - 12у = 100
{х - 21у = 48
{19х + 7у = 100
{х = 48 + 21у
{19х + 7у = 100
1)
19х + 7у = 100
19(48 + 21у) + 7у = 100
912 + 399у + 7у = 100
399у + 7у = 100 - 912
406у = -812
у = -812 : 406
у = -2
2)
х = 48 + 21у
х = 48 + 21 * (-2)
х = 48 - 42
х = 6
(6; -2)



Let's solve these systems of linear equations step by step.
- [10(x + y) = 30 + 8x, 9(x - y) = -49 - 8y]
First, expand the equations:
10x + 10y = 30 + 8x (Equation 1) 9x - 9y = -49 - 8y (Equation 2)
Now, simplify the equations:
10x - 8x + 10y = 30 (Combine like terms in Equation 1) 9x + 8y - 9y = -49 (Combine like terms in Equation 2)
2x + 10y = 30 (Simplify Equation 1) 9x - y = -49 (Simplify Equation 2)
Now, let's solve this system of equations using the method of substitution or elimination. We'll use the elimination method.
Multiply Equation 2 by 10 to make the coefficients of y in both equations equal:
20x + 100y = 300 (Multiply Equation 1 by 10) 90x - 10y = -490 (Multiply Equation 2 by 10)
Now, add the two equations together to eliminate y:
(20x + 100y) + (90x - 10y) = 300 - 490
Combine like terms:
110x + 90y = -190
Now, let's solve for x:
110x = -190 - 90y
Divide both sides by 110:
x = (-190 - 90y) / 110
Now, let's solve for y:
2x + 10y = 30
2[(-190 - 90y) / 110] + 10y = 30
Multiply both sides by 110 to get rid of the fraction:
2(-190 - 90y) + 110(10y) = 3300
Now, simplify:
-380 - 180y + 1100y = 3300
Combine like terms:
-380 + 920y = 3300
Add 380 to both sides:
920y = 3300 + 380
920y = 3680
Now, divide by 920 to solve for y:
y = 3680 / 920 y = 4
Now that we have the value of y, we can substitute it back into one of the original equations to solve for x. Let's use Equation 1:
2x + 10y = 30
2x + 10(4) = 30
2x + 40 = 30
Subtract 40 from both sides:
2x = 30 - 40 2x = -10
Now, divide by 2 to solve for x:
x = -10 / 2 x = -5
So, the solution to the first system of equations is x = -5 and y = 4.
Now, let's move on to the second system of equations:
- [21(x - y) = 48 + 20x, 19(y + x) = 100 + 12y]
First, expand the equations:
21x - 21y = 48 + 20x (Equation 1) 19y + 19x = 100 + 12y (Equation 2)
Now, simplify the equations:
21x - 20x - 21y = 48 (Combine like terms in Equation 1) 19x - 12y - 19y = 100 (Combine like terms in Equation 2)
x - 21y = 48 (Simplify Equation 1) 19x - 31y = 100 (Simplify Equation 2)
Now, let's solve this system of equations using the elimination method. Multiply Equation 1 by 19 and Equation 2 by 21 to make the coefficients of x in both equations equal:
19(x - 21y) = 19(48) (Multiply Equation 1 by 19) 21(19x - 31y) = 21(100) (Multiply Equation 2 by 21)
Now, simplify:
19x - 399y = 912 (Simplify Equation 1) 399x - 651y = 2100 (Simplify Equation 2)
Now, add the two equations together to eliminate x:
(19x - 399y) + (399x - 651y) = 912 + 2100
Combine like terms:
418x - 1050y = 3012
Now, let's solve for x:
418x = 3012 + 1050y
Divide both sides by 418:
x = (3012 + 1050y) / 418
Now, we can substitute this expression for x into Equation 1:
x - 21y = 48
[(3012 + 1050y) / 418] - 21y = 48
Now, simplify:
(3012 + 1050y) - 21y418 = 48418
Expand:
3012 + 1050y - 8788y = 20064
Combine like terms:
-7738y = 20064 - 3012
-7738y = 17052
Now, divide by -7738 to solve for y:
y = 17052 / -7738 y ≈ -2.2035 (rounded to four decimal places)
Now that we have the value of y, we can substitute it back into the expression we found for x:
x = (3012 + 1050y) / 418
x = (3012 + 1050*(-2.2035)) / 418
x ≈ (3012 - 2315.617) / 418
x ≈ 6.7101 (rounded to four decimal places)
So, the solution to the second system of equations is x ≈ 6.7101 and y ≈ -2.2035 (rounded to four decimal places).


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili