Вопрос задан 23.09.2023 в 16:12. Предмет Математика. Спрашивает Сорокопудова Анастасия.

Помогите кто сможет Визначити проміжки монотонності функції вираз: y=3x^2-6x+1 токо что бы

правильно было
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Епифанов Кирилл.

Ответ:

Пошаговое объяснение:

Нужно найти производную данной функции

y^{|}(x)=6x-6, точкa экстремума 6x-6=0⇒6x=6⇒x=1 точка минимума

х ∈(-∝;1) y(x)<0 функция убывает

х∈(1;+∝) у(х)>0 функция возрастает

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для визначення проміжків монотонності функції y = 3x^2 - 6x + 1, спершу знайдемо похідну цієї функції і визначимо, де вона додатня, а де від'ємна.

  1. Знайдемо похідну функції y = 3x^2 - 6x + 1: y' = d/dx (3x^2 - 6x + 1)

Для знаходження похідної застосуємо правила диференціювання:

y' = 6x - 6

  1. Тепер визначимо, де похідна додатня, а де від'ємна:

    6x - 6 > 0

Розв'яжемо нерівність:

6x > 6 x > 1

Тепер знайдемо, де похідна менше нуля:

6x - 6 < 0

Розв'яжемо цю нерівність:

6x < 6 x < 1

Отже, функція y = 3x^2 - 6x + 1 зростає (є додатньою) при x > 1 і спадає (є від'ємною) при x < 1.

Проміжок монотонності:

  • Функція зростає на проміжку (-∞, 1).
  • Функція спадає на проміжку (1, +∞).
0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос