
74. Найти стороны прямоугольника, если его площадь 72 см^2, а периметр 36 см.


Ответы на вопрос

Ответ:Пусть стороны прямоугольника равны a и b (где a - ширина, b - длина).
Мы знаем, что площадь прямоугольника равна произведению его сторон: a * b = 72 см^2.
Также известно, что периметр прямоугольника равен сумме всех его сторон: 2 * (a + b) = 36 см.
Мы можем использовать эти два уравнения для решения системы уравнений и нахождения значений a и b.
Из уравнения площади прямоугольника: a * b = 72 см^2, мы можем выразить одну из переменных через другую:
a = 72 см^2 / b
Подставим это выражение в уравнение периметра:
2 * ((72 см^2 / b) + b) = 36 см
Раскроем скобки и упростим:
144 см^2 / b + 2b = 36 см
144 см^2 + 2b^2 = 36b
2b^2 - 36b + 144 см^2 = 0
Пошаговое объяснение:



Давайте обозначим стороны прямоугольника как a и b, где a - это длина, а b - это ширина.
Площадь прямоугольника вычисляется как произведение его длины и ширины:
Площадь = a * b = 72 см²
Периметр прямоугольника равен удвоенной сумме его длины и ширины:
Периметр = 2a + 2b = 36 см
Теперь у нас есть два уравнения:
- a * b = 72
- 2a + 2b = 36
Давайте решим систему уравнений методом подстановки.
Из первого уравнения выразим a через b:
a = 72 / b
Подставим это выражение во второе уравнение:
2(72 / b) + 2b = 36
Упростим уравнение, умножив обе стороны на b:
2 * 72 + 2b^2 = 36b
Теперь у нас есть уравнение:
144 + 2b^2 = 36b
Переносим все члены на одну сторону:
2b^2 - 36b + 144 = 0
Разделим всё уравнение на 2 для упрощения:
b^2 - 18b + 72 = 0
Теперь давайте решим это квадратное уравнение. Мы можем попробовать разложение на множители:
(b - 12)(b - 6) = 0
Таким образом, у нас есть два возможных значения b:
- b - 12 = 0 => b = 12
- b - 6 = 0 => b = 6
Теперь найдем соответствующие значения a, используя первое уравнение:
- Если b = 12, то a = 72 / 12 = 6
- Если b = 6, то a = 72 / 6 = 12
Итак, у нас есть два варианта:
- Прямоугольник с длиной a = 6 см и шириной b = 12 см.
- Прямоугольник с длиной a = 12 см и шириной b = 6 см.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili