
4x-6/x+2 - x/x+1 = 9/x^2+3x+2


Ответы на вопрос

Ответ:
Смотри решение на фото.




To solve the equation (4x - 6)/(x + 2) - x/(x + 1) = 9/(x^2 + 3x + 2), we can start by finding a common denominator for all the fractions on the left side of the equation. The common denominator will be (x + 2)(x + 1), which is also equal to (x^2 + 3x + 2).
Now, let's rewrite the equation with the common denominator:
(4x - 6)/(x + 2)(x + 1) - x/(x + 2)(x + 1) = 9/(x^2 + 3x + 2)
Now, we can combine the fractions on the left side:
[(4x - 6 - x)]/(x + 2)(x + 1) = 9/(x^2 + 3x + 2)
Simplify the numerator on the left side:
(3x - 6)/(x + 2)(x + 1) = 9/(x^2 + 3x + 2)
Next, we can cross-multiply to eliminate the fractions:
(3x - 6) * (x^2 + 3x + 2) = 9 * (x + 2)(x + 1)
Now, distribute on both sides:
3x(x^2 + 3x + 2) - 6(x^2 + 3x + 2) = 9(x^2 + 3x + 2)
Now, simplify further:
3x^3 + 9x^2 + 6x - 6x^2 - 18x - 12 = 9x^2 + 27x + 18
Combine like terms on both sides:
3x^3 + (9x^2 - 6x^2 - 9x^2) + (6x - 18x - 27x) - 12 - 18 = 0
Now, simplify further:
3x^3 - 12x^2 - 39x - 30 = 0
Now, let's factor out a common factor of 3:
3(x^3 - 4x^2 - 13x - 10) = 0
Now, we need to solve the cubic equation x^3 - 4x^2 - 13x - 10 = 0. Unfortunately, this cubic equation does not have a simple solution using elementary algebraic methods. You may need to use numerical methods or a calculator to find approximate solutions for x.
You can use numerical methods like the Newton-Raphson method or a graphing calculator to find approximate solutions for x.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili