
Вопрос задан 23.09.2023 в 00:08.
Предмет Математика.
Спрашивает Галлямова Айсылу.
F(x)=√x-6 - 4/√5-xf(x)=√x+1 - 7x+8/x²+4x срочно надо пожалуйста 20балов даю


Ответы на вопрос

Отвечает Скурихин Никита.
To simplify these expressions, let's go step by step:
1) Simplifying f(x) = √x - 6 - 4/√(5-x):
To simplify this expression, we need to have a common denominator for the fraction. The common denominator is √(5-x), so we can rewrite the expression as:
f(x) = (√x * √(5-x) - 6√(5-x))/√(5-x) - 4/√(5-x)
Now, let's simplify the numerator of the fraction:
f(x) = (√x * √(5-x) - 6√(5-x))/√(5-x) - 4/√(5-x)
f(x) = (√(x*(5-x)) - 6√(5-x))/√(5-x) - 4/√(5-x)
f(x) = (√(5x-x^2) - 6√(5-x))/√(5-x) - 4/√(5-x)
Now, we can combine the terms:
f(x) = (√(5x-x^2) - 6√(5-x) - 4)/√(5-x)
So, the simplified expression is f(x) = (√(5x-x^2) - 6√(5-x) - 4)/√(5-x).
2) Simplifying f(x) = √x+1 - (7x+8)/(x^2+4x):
To simplify this expression, we first need to find a common denominator for the fraction.
f(x) = √x+1 - (7x+8)/(x^2+4x)
f(x) = √x+1 - (7x+8)/(x(x+4))
Now, let's simplify the numerator of the fraction:
f(x) = √x+1 - (7x+8)/(x(x+4))
f(x) = √x+1 - (7x+8)/x(x+4)
f(x) = √x+1 - (7x+8)/(x^2+4x)
Now, we can combine the terms:
f(x) = (√x+1*(x^2+4x) - (7x+8))/x(x+4)
f(x) = (√(x+1)*(x^2+4x) - (7x+8))/x(x+4)
So, the simplified expression is f(x) = (√(x+1)*(x^2+4x) - (7x+8))/x(x+4).
1) Simplifying f(x) = √x - 6 - 4/√(5-x):
To simplify this expression, we need to have a common denominator for the fraction. The common denominator is √(5-x), so we can rewrite the expression as:
f(x) = (√x * √(5-x) - 6√(5-x))/√(5-x) - 4/√(5-x)
Now, let's simplify the numerator of the fraction:
f(x) = (√x * √(5-x) - 6√(5-x))/√(5-x) - 4/√(5-x)
f(x) = (√(x*(5-x)) - 6√(5-x))/√(5-x) - 4/√(5-x)
f(x) = (√(5x-x^2) - 6√(5-x))/√(5-x) - 4/√(5-x)
Now, we can combine the terms:
f(x) = (√(5x-x^2) - 6√(5-x) - 4)/√(5-x)
So, the simplified expression is f(x) = (√(5x-x^2) - 6√(5-x) - 4)/√(5-x).
2) Simplifying f(x) = √x+1 - (7x+8)/(x^2+4x):
To simplify this expression, we first need to find a common denominator for the fraction.
f(x) = √x+1 - (7x+8)/(x^2+4x)
f(x) = √x+1 - (7x+8)/(x(x+4))
Now, let's simplify the numerator of the fraction:
f(x) = √x+1 - (7x+8)/(x(x+4))
f(x) = √x+1 - (7x+8)/x(x+4)
f(x) = √x+1 - (7x+8)/(x^2+4x)
Now, we can combine the terms:
f(x) = (√x+1*(x^2+4x) - (7x+8))/x(x+4)
f(x) = (√(x+1)*(x^2+4x) - (7x+8))/x(x+4)
So, the simplified expression is f(x) = (√(x+1)*(x^2+4x) - (7x+8))/x(x+4).



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Давайте разберёмся с этими двумя функциями. У вас есть две функции, обозначенные как . Я предполагаю, что вы хотите узнать их производные. Давайте найдем производные каждой функции.
Для начала возьмём производную квадратного корня и производную дроби:
Теперь применим правило дифференцирования сложной функции (цепное правило):
Аналогично, начнём с производной квадратного корня и производной дроби:
Для дроби применим правило частного:
Теперь применим правило дифференцирования сложной функции (цепное правило):
Похожие вопросы

Математика 80