
Вопрос задан 01.09.2023 в 05:42.
Предмет Математика.
Спрашивает Полубуткина Ольга.
Найдите радиус окружности вписанной в равносторонний треугольник со стороной 12 см


Ответы на вопрос

Отвечает Кулик Ольга.
Вообще то полезно запомнить. В равностороннем треугольнике радиус описанной окружности равен R = a/корень(3); а радиус вписанной окружности в 2 раза меньше.Прямой способ - применить теорему синусов 2*R*sin(60) = a, откуда это сразу следует. Если теорема синусов незнакома - не беда, в правильном треугольнике все центры совпадают, и центр описанной окружности лежит на пересечении медиан, то есть на расстоянии (2/3 от длины медианы-биссектрисы-высоты) от вершины.Высота равна а*корень(3)/2, что лекго сосчитать из треугольника с гипотенузой а и малым катетом а/2. А радиус R = (2/3)*a*корень(3)/2 = a*корень(3)/3 = a/корень(3);Ответ 4*корень(3)



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения радиуса окружности, вписанной в равносторонний треугольник, мы можем воспользоваться следующей формулой:
где:
- - радиус вписанной окружности.
- - длина стороны равностороннего треугольника.
В данном случае см. Подставляем значение в формулу:
Теперь вычислим значение радиуса:
Итак, радиус окружности, вписанной в равносторонний треугольник со стороной длиной 12 см, равен см.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili