
3x^2+x-17 <0 aaaaaaa help


Ответы на вопрос

y = 3x^2+x-17
3x^2+x-17=0
D=1+204=205
x1,2= (-1+-корень из 205)/6
((-1-кор из 205)/6 ; (-1+кор из 205)/6)



To solve the inequality , we need to find the intervals of for which the expression is less than zero. Here's how you can do it step by step:
Factor the Quadratic Expression: Unfortunately, the quadratic cannot be easily factored. So, we'll use the quadratic formula to find its roots and then proceed.
Quadratic Formula: The roots of the quadratic equation can be found using the quadratic formula:
For your quadratic equation , , , and .
The discriminant () in this case is , which is positive.
So, the roots are:
Find the Intervals: To solve the inequality , we need to find the intervals where the quadratic expression is less than zero.
Since the coefficient of is positive (3), the quadratic opens upwards, forming a U-shape. The expression is negative between the two roots, so we're interested in the interval where lies between these roots.
The values of the roots are approximately:
Inequality Solution: Now we need to find the interval for where the expression is negative. This interval is .
Therefore, the solution to the inequality is:
This means that the inequality is satisfied when is within the interval .


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili