Вопрос задан 24.08.2023 в 16:18.
Предмет Математика.
Спрашивает Холявенко Эльдар.
Найти d^2 z /dxdy ,если z = x^3/y^2 +x
Ответы на вопрос
        Отвечает Завьялова Катя.
                
                   Dz/dx=3x²/y²+1              
d²z/dxdy=-6x²/y³
                                        d²z/dxdy=-6x²/y³
        Отвечает Маяцкий Егор.
                
                   Вот пишы на здоровья окейт              
                            
            Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
                
    Давайте найдем вторую смешанную производную z по x и y. Сначала найдем первую производную z по x:
z = x^3/y^2 + x
Чтобы найти ∂z/∂x, продифференцируем каждый член по x:
∂(x^3/y^2)/∂x = 3x^2/y^2 ∂x/∂x = 1
Теперь найдем первую производную z по y:
∂(x^3/y^2)/∂y = -2x^3/y^3 ∂x/∂y = 0
∂z/∂y = -2x^3/y^3
Теперь найдем вторую смешанную производную ∂^2z/∂x∂y:
∂(-2x^3/y^3)/∂x = -6x^2/y^3 ∂(-2x^3/y^3)/∂y = 6x^3/y^4
Таким образом, вторая смешанная производная ∂^2z/∂x∂y равна:
∂^2z/∂x∂y = -6x^2/y^3 + 6x^3/y^4
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
	- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			