
Lim(x->1) (2x^2+5x-7)/(7x^2-3x-4)


Ответы на вопрос




To find the limit of the given function as x approaches 1, we can directly substitute x = 1 into the expression. However, since this would result in division by zero in the denominator, we should try to simplify the expression first.
Given function: f(x) = (2x^2 + 5x - 7) / (7x^2 - 3x - 4)
Step 1: Factorize the numerator and denominator. Numerator: 2x^2 + 5x - 7 Denominator: 7x^2 - 3x - 4
The numerator does not factor further, but the denominator can be factorized as follows: Denominator: (7x + 8)(x - 1)
Step 2: Cancel out common factors if possible. Now, the (x - 1) term appears in both the numerator and the denominator, so we can cancel it out.
f(x) = (2x^2 + 5x - 7) / (7x^2 - 3x - 4) f(x) = (2x^2 + 5x - 7) / [(7x + 8)(x - 1)] f(x) = [(2x + 7)(x - 1)] / [(7x + 8)(x - 1)]
Step 3: Cancel the common factor (x - 1) from the numerator and denominator. f(x) = (2x + 7) / (7x + 8)
Step 4: Now, we can find the limit as x approaches 1 by directly substituting x = 1 into the simplified expression.
lim(x->1) f(x) = lim(x->1) (2x + 7) / (7x + 8)
Now, we can substitute x = 1:
lim(x->1) f(x) = (2 * 1 + 7) / (7 * 1 + 8) lim(x->1) f(x) = (2 + 7) / (7 + 8) lim(x->1) f(x) = 9 / 15
Step 5: Simplify the fraction.
lim(x->1) f(x) = 3 / 5
Therefore, the limit of the given function as x approaches 1 is 3/5.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili