
3(х-1)-2(1+х)≤1, 3х-4≥0


Ответы на вопрос





To solve the inequalities, let's tackle them one by one.
- 3(x - 1) - 2(1 + x) ≤ 1
Step 1: Distribute the terms inside the parentheses. 3x - 3 - 2 - 2x ≤ 1
Step 2: Combine like terms on the left-hand side. 3x - 2x - 5 ≤ 1
Step 3: Simplify the left-hand side. x - 5 ≤ 1
Step 4: Move the constant term to the right-hand side. x ≤ 1 + 5
Step 5: Final result. x ≤ 6
So the solution for the first inequality is x ≤ 6.
- 3x - 4 ≥ 0
Step 1: Add 4 to both sides to isolate the variable term. 3x ≥ 4
Step 2: Divide both sides by 3 (since the coefficient of x is positive, we don't need to change the inequality direction). x ≥ 4/3
So the solution for the second inequality is x ≥ 4/3.
Now, to find the combined solution, we need to find the values of x that satisfy both inequalities.
The common region where both inequalities are true is where x is less than or equal to 6 and greater than or equal to 4/3.
So the combined solution is x ∈ [4/3, 6].


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili