Вопрос задан 30.07.2023 в 20:37. Предмет Математика. Спрашивает Болгов Егор.

Как измениться площадь круга и длина его окружности , если радиус уменьшится в 6 ; 7,5 раза?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Красникова Анастасия.
Так как длина окружности радиуса R равна L=2*π*R,  тогда L1=2*π*R/6=π*R/3 - длина окружности уменьшится в 6 раз
L2=2*π*R/7,5- длина окружности уменьшится в 7,5 раза
S=π*R², откуда S1=π*R²/36 - площадь круга уменьшится в 36 раз
S2=π*R²/7,5²= π*R²/56,25- площадь круга уменьшится в 56,25 раза.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы узнать, как изменится площадь круга и длина его окружности при уменьшении радиуса в 6 и 7,5 раза, нужно использовать следующие формулы:

Площадь круга: A = π * r^2 Длина окружности: C = 2 * π * r

Где: A - площадь круга C - длина окружности r - радиус круга π (пи) - математическая константа, примерное значение которой 3.14159 (для упрощения можно использовать 3.14).

Теперь давайте рассчитаем изменения:

  1. При уменьшении радиуса в 6 раз: Если исходный радиус равен r, то новый радиус будет r / 6.

a) Площадь нового круга: A_новая = π * (r/6)^2 = π * (r^2 / 36) = A / 36

Таким образом, площадь нового круга будет меньше исходной в 36 раз.

b) Длина новой окружности: C_новая = 2 * π * (r/6) = 2 * π * r / 6 = C / 6

Длина новой окружности будет меньше исходной в 6 раз.

  1. При уменьшении радиуса в 7,5 раза: Если исходный радиус равен r, то новый радиус будет r / 7.5.

a) Площадь нового круга: A_новая = π * (r/7.5)^2 = π * (r^2 / 56.25) = A / 56.25

Таким образом, площадь нового круга будет меньше исходной в 56.25 раз.

b) Длина новой окружности: C_новая = 2 * π * (r/7.5) = 2 * π * r / 7.5 = C / 7.5

Длина новой окружности будет меньше исходной в 7.5 раз.

Таким образом, при уменьшении радиуса в 6 раз площадь круга уменьшится в 36 раз, а длина его окружности уменьшится в 6 раз. При уменьшении радиуса в 7,5 раз площадь круга уменьшится в 56,25 раз, а длина его окружности уменьшится в 7,5 раз.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос