
в 3 бочках 200 литров бензина в первый и во второй бочке 160 л а во второй и третий 134 Сколько
литров бензина в каждой бочке

Ответы на вопрос

2)160-94=66(л)-в первой
3)134-94=40(л)-в третей



2)160-66=94 во 2 бочке
3)134-94=40 в 3 бочке



Let's assume there are three barrels: Barrel 1, Barrel 2, and Barrel 3. We need to find out how many liters of gasoline are in each barrel based on the information given.
Let's call the amount of gasoline in Barrel 1 as x liters, in Barrel 2 as y liters, and in Barrel 3 as z liters.
According to the given information:
In the first and second barrels, there are a total of 200 liters of gasoline: x + y = 200 ......... (Equation 1)
In the second and third barrels, there are a total of 134 liters of gasoline: y + z = 134 ......... (Equation 2)
In the first and third barrels, there are a total of 160 liters of gasoline: x + z = 160 ......... (Equation 3)
Now, we have a system of three equations (Equation 1, Equation 2, and Equation 3) with three unknowns (x, y, and z). We can solve these equations simultaneously to find the values of x, y, and z.
Subtract Equation 2 from Equation 1 to eliminate y: (x + y) - (y + z) = 200 - 134 x - z = 66 ......... (Equation 4)
Add Equation 1 and Equation 3 to eliminate z: (x + y) + (x + z) = 200 + 160 2x + y + z = 360 ......... (Equation 5)
Now, we have a simplified system of two equations:
Equation 4: x - z = 66 Equation 5: 2x + y + z = 360
Solve these equations to find the values of x, y, and z:
Add Equation 4 and Equation 5: x - z + 2x + y + z = 66 + 360 3x + y = 426
Now, let's isolate y in this equation: y = 426 - 3x ......... (Equation 6)
Now, use Equation 6 in either Equation 4 or Equation 5 to find the value of x or z. Let's use Equation 4:
x - z = 66 x - (426 - 3x) = 66 x - 426 + 3x = 66 4x = 492 x = 492 / 4 x = 123
Now that we have the value of x, we can find y using Equation 6: y = 426 - 3x y = 426 - 3 * 123 y = 426 - 369 y = 57
Finally, find z using Equation 2: z + y = 134 z = 134 - y z = 134 - 57 z = 77
So, the amount of gasoline in each barrel is: Barrel 1: 123 liters Barrel 2: 57 liters Barrel 3: 77 liters


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili