Найти E(y) y=2cosx+5
Ответы на вопрос

To find the expected value E(y) of the random variable y = 2cos(x) + 5, we need to integrate y with respect to its probability density function (PDF) over the entire domain of x.
Since you haven't provided any specific information about the distribution of x, I'll assume that x is a continuous random variable with a uniform distribution over the interval [a, b].
Let's calculate E(y) step by step:
Step 1: Find the PDF of x. For a continuous uniform distribution over [a, b], the PDF is given by:
f(x) = 1 / (b - a) if a ≤ x ≤ b 0 otherwise
Step 2: Find the expected value E(y). E(y) = ∫[a to b] (y * f(x)) dx
Since y = 2cos(x) + 5 and f(x) = 1 / (b - a), we have:
E(y) = ∫[a to b] [(2cos(x) + 5) / (b - a)] dx
Step 3: Calculate the integral.
E(y) = (1 / (b - a)) * ∫[a to b] (2cos(x) + 5) dx = (1 / (b - a)) * [2∫[a to b] cos(x) dx + 5∫[a to b] dx]
The integral of cos(x) is sin(x), and the integral of dx is x:
E(y) = (1 / (b - a)) * [2[sin(b) - sin(a)] + 5[b - a]]
Step 4: Simplify the expression.
E(y) = (2 / (b - a)) * [sin(b) - sin(a)] + 5
This is the expected value E(y) for the given random variable y = 2cos(x) + 5, assuming x follows a continuous uniform distribution over the interval [a, b]. If there's a different distribution for x or if you have specific values for a and b, please provide that information for a more precise calculation.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
