
2(х-3)+у=-4 3(у-1)+2х=3


Ответы на вопрос





To solve the system of equations:
- 2(x - 3) + y = -4
- 3(y - 1) + 2x = 3
We can use the method of substitution or elimination. I'll demonstrate the elimination method here:
Step 1: Multiply the first equation by 3 and the second equation by 2 to eliminate the coefficients of x:
- 3 * [2(x - 3) + y] = 3 * (-4)
- 2 * [3(y - 1) + 2x] = 2 * 3
This simplifies the system to:
- 6(x - 3) + 3y = -12
- 6(y - 1) + 4x = 6
Step 2: Distribute and rearrange the equations:
- 6x - 18 + 3y = -12
- 4x + 6y - 6 = 6
Step 3: Now, let's put both equations in standard form (ax + by = c):
6x + 3y = -12 + 18 6x + 3y = 6 ... (Equation 1')
4x + 6y = 6 + 6 4x + 6y = 12 ... (Equation 2')
Step 4: Multiply Equation 1' by 2 and Equation 2' by -3 to make the coefficients of x in both equations equal:
2 * (6x + 3y) = 2 * 6 12x + 6y = 12 ... (Equation 3')
-3 * (4x + 6y) = -3 * 12 -12x - 18y = -36 ... (Equation 4')
Step 5: Add Equation 3' and Equation 4' to eliminate x:
(12x + 6y) + (-12x - 18y) = 12 + (-36)
The x terms cancel out:
-12y = -24
Step 6: Solve for y:
y = (-24) / (-12) y = 2
Step 7: Substitute the value of y (which is 2) into either Equation 1' or Equation 2' to solve for x. Let's use Equation 1':
6x + 3(2) = 6
Step 8: Solve for x:
6x + 6 = 6 6x = 6 - 6 6x = 0
x = 0
Step 9: Now that we have found the values of x and y, we can verify by substituting them back into either of the original equations. Let's use the first equation:
2(x - 3) + y = -4 2(0 - 3) + 2 = -4 2(-3) + 2 = -4 -6 + 2 = -4 -4 = -4
The equation is true. So, the solution to the system of equations is x = 0 and y = 2.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili