Tg(2arccos(5/√26)-arcsin(12/13))=
Ответы на вопрос


To find the value of the given trigonometric expression, we can start by using trigonometric identities to simplify it.
Let's denote: A = 2arccos(5/√26) and B = arcsin(12/13).
We know the following trigonometric identities:
- arccos(x) + arcsin(x) = π/2, for all valid x values.
- arccos(x) + arcsin(y) = π/2, if x^2 + y^2 = 1.
Using the first identity, we can rewrite A and B as: A = arccos(5/√26) + arccos(5/√26) B = arcsin(12/13)
Now, let's focus on finding the value of A first. We will use the second identity to rewrite the two arccosine terms into a single term: arccos(5/√26) + arccos(5/√26) = arccos(5/√26) + arcsin(√(1 - (5/√26)^2)) = arccos(5/√26) + arcsin(√((26 - 5^2)/26)) = arccos(5/√26) + arcsin(√(1/26)) = arccos(5/√26) + arcsin(1/√26)
Now we can rewrite A as: A = arccos(5/√26) + arcsin(1/√26)
Now, we have A and B in the same form, and we can use the first identity to combine them: Tg(A - B) = Tg(arccos(5/√26) + arcsin(1/√26) - arcsin(12/13))
Unfortunately, we can't simplify this expression further without knowing the specific values of the angles involved. So, the final answer will remain in this form:
Tg(2arccos(5/√26) - arcsin(12/13)) = Tg(arccos(5/√26) + arcsin(1/√26) - arcsin(12/13))
If you have specific values for the angles involved (e.g., the values of arccos(5/√26), arcsin(1/√26), and arcsin(12/13)), then you can substitute those values into the expression to find the numerical result.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
