
Найти sinx*cosx если cosx=7sinx


Ответы на вопрос




To find the value of sin(x)*cos(x) given that cos(x) = 7sin(x), we can use trigonometric identities to express sin(x)*cos(x) in terms of one variable. Let's proceed step by step:
Start with the given equation: cos(x) = 7sin(x).
Recall the Pythagorean identity: sin^2(x) + cos^2(x) = 1.
Square both sides of the given equation to eliminate the trigonometric functions: cos^2(x) = (7sin(x))^2 cos^2(x) = 49sin^2(x)
Now, use the Pythagorean identity to replace sin^2(x) in terms of cos^2(x): 49sin^2(x) = 49(1 - cos^2(x))
Rearrange the equation to solve for cos^2(x): 49 - 49cos^2(x) = 49sin^2(x)
Substitute the given equation cos(x) = 7sin(x) into the above equation: 49 - 49cos^2(x) = 49(7sin(x))^2 49 - 49cos^2(x) = 49(49sin^2(x))
Use the fact that sin^2(x) = (1 - cos^2(x)) (from the Pythagorean identity) to simplify further: 49 - 49cos^2(x) = 49(49 - cos^2(x))
Distribute on the right-hand side: 49 - 49cos^2(x) = 2401 - 49cos^2(x)
Now, move all the terms involving cos^2(x) to one side of the equation: 49cos^2(x) - 49cos^2(x) = 2401 - 49
Simplify the equation: 0 = 2352
The equation simplifies to 0 = 2352, which is not a true statement. This implies that there is no valid solution for x that satisfies the given equation cos(x) = 7sin(x). Therefore, sin(x)*cos(x) cannot be determined with the given information.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili