
Найдите f'(6), если f(x)=|x²-14x+45|


Ответы на вопрос

sign(x) = -1, x<0
sign(x) = 1, x > 0
sign(x) = 0, x = 0



Ответ на картинке внизу страницы




To find the derivative of the function f(x) = |x² - 14x + 45| and then evaluate it at x = 6, we need to consider the two cases when x² - 14x + 45 is positive and negative.
Step 1: Find the derivative of f(x) for x² - 14x + 45 > 0 (i.e., when x is outside the roots of the quadratic).
In this case, |x² - 14x + 45| = x² - 14x + 45, so we need to find the derivative of x² - 14x + 45.
f(x) = x² - 14x + 45 f'(x) = d/dx (x²) - d/dx (14x) + d/dx (45) f'(x) = 2x - 14
Step 2: Find the derivative of f(x) for x² - 14x + 45 < 0 (i.e., when x is between the roots of the quadratic).
In this case, |x² - 14x + 45| = -(x² - 14x + 45), so we need to find the derivative of -(x² - 14x + 45).
f(x) = -(x² - 14x + 45) f'(x) = -d/dx (x²) + d/dx (14x) - d/dx (45) f'(x) = -2x + 14
Step 3: Determine the interval for which x² - 14x + 45 > 0 or x² - 14x + 45 < 0.
The roots of x² - 14x + 45 = 0 can be found by setting the quadratic expression equal to zero and solving for x:
x² - 14x + 45 = 0 (x - 5)(x - 9) = 0
The roots are x = 5 and x = 9.
Now, we can determine the intervals:
- When x < 5: x² - 14x + 45 > 0
- When 5 < x < 9: x² - 14x + 45 < 0
- When x > 9: x² - 14x + 45 > 0
Step 4: Evaluate f'(x) at x = 6.
Since 5 < 6 < 9, we use the second derivative we found for the interval 5 < x < 9:
f'(6) = -2(6) + 14 f'(6) = -12 + 14 f'(6) = 2
So, f'(6) = 2 when x = 6.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili