
1) 3 |x| - 1 = 02) 2 |x| + 3 = 03) |3x + 2| - 4 = 04) |2x - 1| + 7 = 8


Ответы на вопрос




To solve each of these equations, we need to isolate the absolute value term and then solve for the variable x. Remember that the absolute value of a number can be positive or negative, so we will have to consider both cases when solving these equations.
- 3 |x| - 1 = 0
First, add 1 to both sides of the equation:
3 |x| = 1
Now, divide both sides by 3:
|x| = 1/3
Since the absolute value of a number cannot be negative, we can have two cases:
Case 1: x = 1/3 Case 2: x = -1/3
- 2 |x| + 3 = 0
Subtract 3 from both sides of the equation:
2 |x| = -3
This equation has no solution because the absolute value of a number can never be negative, and the left side of the equation is positive or zero.
- |3x + 2| - 4 = 0
First, add 4 to both sides of the equation:
|3x + 2| = 4
Now, we'll have two cases to consider:
Case 1: 3x + 2 = 4 Solve for x: 3x = 4 - 2 3x = 2 x = 2/3
Case 2: -(3x + 2) = 4 Solve for x: -3x - 2 = 4 -3x = 4 + 2 -3x = 6 x = -6/3 x = -2
So, the solutions are x = 2/3 and x = -2.
- |2x - 1| + 7 = 8
Subtract 7 from both sides of the equation:
|2x - 1| = 1
Now, we'll have two cases:
Case 1: 2x - 1 = 1 Solve for x: 2x = 1 + 1 2x = 2 x = 2/2 x = 1
Case 2: -(2x - 1) = 1 Solve for x: -2x + 1 = 1 -2x = 1 - 1 -2x = 0 x = 0/(-2) x = 0
So, the solutions are x = 1 and x = 0.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili