
(√3-2)x<√3-2 Подробно)


Ответы на вопрос

√3-2<0
x<(√3-2)/(√3-2)
x>1
x€(1;+oo)



To solve the inequality (√3-2)x < √3-2, we'll need to isolate x on one side of the inequality. Let's break it down step by step:
Step 1: Distribute the x on the left side of the inequality: (√3 - 2)x < √3 - 2
Step 2: Now, we'll move the constant term (√3 - 2) to the right side by adding it to both sides of the inequality: (√3 - 2)x + 2 < √3
Step 3: Next, we want to isolate x. To do that, divide both sides of the inequality by (√3 - 2). However, there's one thing to note here. Since (√3 - 2) is negative (assuming x is real), dividing by a negative number will flip the inequality sign. So, we need to be careful:
(√3 - 2)x + 2 < √3
Divide both sides by (√3 - 2), remembering to flip the inequality sign: x < (√3) / (√3 - 2)
Now, we have the solution for x. Let's simplify (√3) / (√3 - 2):
To rationalize the denominator, we'll multiply both the numerator and denominator by (√3 + 2) (conjugate of (√3 - 2)):
(√3) / (√3 - 2) * (√3 + 2) / (√3 + 2)
Using the difference of squares (a^2 - b^2 = (a + b)(a - b)), the denominator simplifies:
= (√3 * (√3 + 2)) / ((√3)^2 - (2)^2) = (√3 * (√3 + 2)) / (3 - 4) = (√3 * (√3 + 2)) / (-1) = -√3 - 2
So, the inequality becomes:
x < -√3 - 2
That's the final solution. Any value of x that is less than -√3 - 2 will satisfy the original inequality (√3 - 2)x < √3 - 2.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili