Вопрос задан 28.07.2023 в 20:56. Предмет Математика. Спрашивает Горина Настя.

Если x и y положительные целые числа и 2x²+xy-y²=540, Найдите сумму всех возможных значений x

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Добромиров Матвей.

2x^2+xy-y^2=540

(x+y)(2x-y)=540

первый множитель больше второго поэтому я нашла разложение 540 на множители

27*20;30*18;36*15;45*12;54*10;60*9;90*6;108*5;135*4;180*3;270*2

и решила систему для этих пар чисел с учетом что х и у должны быть целые

30 и 18 х=16

36 и 15 х=17

45 и 12 х=19

60 и 9 х=23

90 и 6 х=28

180 и 3 х=61

Итого 16+17+19+23+28+61=164

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного уравнения и нахождения всех возможных значений x, давайте разберемся, как его решить.

Уравнение: 2x² + xy - y² = 540

Поскольку x и y являются положительными целыми числами, давайте рассмотрим различные возможности для выражения 540 в виде разности квадратов или суммы квадратов. Нам понадобится некоторое алгебраическое преобразование для этого.

Мы видим, что коэффициенты перед x² и y² в уравнении имеют разницу. Можем использовать это замечание для преобразования:

2x² + xy - y² = 540 (2x - y)(x + y) = 540

Теперь мы хотим представить 540 в виде произведения двух чисел. Поскольку x и y положительные целые числа, то их разность (2x - y) и сумма (x + y) тоже положительные целые числа.

Теперь, давайте перечислим все положительные целочисленные пары, произведение которых равно 540.

540 = 1 × 540 540 = 2 × 270 540 = 3 × 180 540 = 4 × 135 540 = 5 × 108 540 = 6 × 90 540 = 9 × 60 540 = 10 × 54 540 = 12 × 45 540 = 15 × 36 540 = 18 × 30 540 = 20 × 27

Теперь, поскольку (2x - y) и (x + y) являются положительными целыми числами, в каждом из этих разложений наших факторов, мы можем найти соответствующие значения x и y:

  1. 2x - y = 540, x + y = 1 (нет решений, так как сумма положительных чисел не может быть 1)
  2. 2x - y = 270, x + y = 2 Решение: x = 136, y = -134 (не подходит, так как y должно быть положительным)
  3. 2x - y = 180, x + y = 3 Решение: x = 91, y = -87 (не подходит, так как y должно быть положительным)
  4. 2x - y = 135, x + y = 4 Решение: x = 69, y = -63 (не подходит, так как y должно быть положительным)
  5. 2x - y = 108, x + y = 5 Решение: x = 56, y = -52 (не подходит, так как y должно быть положительным)
  6. 2x - y = 90, x + y = 6 Решение: x = 48, y = 42 (подходит)
  7. 2x - y = 60, x + y = 9 Решение: x = 34, y = 25 (подходит)
  8. 2x - y = 54, x + y = 10 Решение: x = 32, y = 22 (подходит)
  9. 2x - y = 45, x + y = 12 Решение: x = 29, y = 17 (подходит)
  10. 2x - y = 36, x + y = 15 Решение: x = 26, y = 10 (подходит)
  11. 2x - y = 30, x + y = 18 Решение: x = 24, y = 6 (подходит)
  12. 2x - y = 27, x + y = 20 Решение: x = 23, y = 4 (подходит)

Таким образом, возможные значения x, при условии, что x и y являются положительными целыми числами, равны: 48, 34, 32, 29, 26, 24 и 23.

Теперь найдем сумму всех возможных значений x:

48 + 34 + 32 + 29 + 26 + 24 + 23 = 216

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос