
5^(x-1)+5*0,2^(x-2)=26


Ответы на вопрос

.............................




To solve the equation 5^(x-1) + 5 * 0.2^(x-2) = 26, we'll follow these steps:
Step 1: Simplify the equation. Step 2: Use algebraic techniques to solve for x.
Let's start with step 1:
5^(x-1) + 5 * 0.2^(x-2) = 26
Step 2: We can rewrite 0.2 as 1/5, as 0.2 = 1/5.
5^(x-1) + 5 * (1/5)^(x-2) = 26
Now, we can simplify the second term, (1/5)^(x-2) as follows:
(1/5)^(x-2) = 5^(2-x)
Substitute this back into the equation:
5^(x-1) + 5 * 5^(2-x) = 26
Now, both terms on the left side of the equation have the same base (5), so we can combine them into one term using the rules of exponents:
5^(x-1) + 5^(1 + 2-x) = 26
Now, we have the bases as 5^(x-1) and 5^3, which is 125:
5^(x-1) + 5^3 = 26
Rearrange the equation:
5^(x-1) = 26 - 125
5^(x-1) = -99
Now, to isolate x, we can take the logarithm of both sides. Let's use the natural logarithm (ln) here:
ln(5^(x-1)) = ln(-99)
Apply the logarithm property that ln(a^b) = b * ln(a):
(x-1) * ln(5) = ln(-99)
Finally, solve for x:
x - 1 = ln(-99) / ln(5)
x = 1 + ln(-99) / ln(5)
It appears that the result for x is a complex number because ln(-99) is not a real number. Thus, the equation might not have a real solution.
Keep in mind that solving equations involving powers might lead to complex solutions or no real solutions. You might want to double-check the original equation or provide additional context if you believe there is a mistake.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili