Вопрос задан 27.07.2023 в 11:07. Предмет Математика. Спрашивает Бритов Егор.

Очень срочнноо Углы AKB и DKC равны, луч KE - биссектриса угла AKD. Докажите, что угол BKE = углу

CKE.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вережак Саня.

Это можно увидеть из построения

угол BKE состоит из углаAKB + углаEKA

угол CKE состоит из углаDEK+углаDKC

из условия угол AKB=углу DKC; уголEKA=углуEKD

Значит BKE=CKE

чтд

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для доказательства равенства углов BKE и CKE воспользуемся информацией, что луч KE является биссектрисой угла AKD.

По определению биссектрисы, она делит угол на два равных угла. Таким образом, угол BKE и угол CKE будут равны между собой, так как они являются двумя равными половинами угла AKD.

Давайте обозначим меру угла BKE как α и меру угла CKE как β. Тогда угол AKD можно представить как сумму углов BKE и CKE: AKD = α + β.

Поскольку углы AKB и DKC равны, обозначим их меру также как α и β соответственно. Тогда угол AKD можно также представить как сумму углов AKB и DKC: AKD = α + β.

Таким образом, мы получили два равенства для угла AKD:

  1. AKD = α + β
  2. AKD = α + β

Так как два выражения равны одному и тому же углу, то их части тоже должны быть равными:

α + β = α + β

Теперь вычтем α из обеих сторон уравнения:

β = β

Это означает, что угол BKE и угол CKE имеют одинаковую меру, т.е. они равны:

α = β

Исходный угловой равенство доказано, и мы показали, что угол BKE равен углу CKE.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос