
На основании AD трапеции ABCD (AD∥BC) отмечена точка N. Оказалось, что AN:ND=3:4, а ∠NCD=90 .
Найдите длину медианы NK треугольника BNC, если BC=8, AD=14.

Ответы на вопрос

Решение задачи на фотографии




Для решения этой задачи, давайте начнем с построения схемы:
Построим трапецию ABCD:
A------N------B | | | | D-------------C
Мы знаем, что AD ∥ BC (параллельны).
У нас также есть информация, что AN : ND = 3 : 4. Это означает, что отрезок AN составляет 3 части, а отрезок ND - 4 части. Так как медиана делит отрезок на две равные части, обозначим точку медианы как K. Тогда AK равно половине AN, а KN равно половине ND.
У нас есть информация, что ∠NCD = 90°, а значит, треугольник NCD - прямоугольный с прямым углом в точке C.
Нам известно, что BC = 8 и AD = 14.
Теперь, чтобы найти длину медианы NK, давайте выполним следующие шаги:
Найдем длину отрезка ND: Пусть x - общий множитель, тогда AN = 3x и ND = 4x. Также известно, что AD = 14, поэтому 3x + 4x = 14. Решим уравнение: 7x = 14 => x = 2. Теперь можем найти ND: ND = 4 * 2 = 8.
Найдем длину отрезка AN: AN = 3 * 2 = 6.
Найдем длину медианы NK: Поскольку медиана делит отрезок ND пополам, то KN = ND / 2 = 8 / 2 = 4.
Теперь у нас есть длина медианы NK, которая равна 4.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili