
Решите систему 3x^2+y^2-xy=3 2x^2-4y^2+3xy=1


Ответы на вопрос

2y² - xy = 3 |·2
y² + 4xy - 3x² = 6
4y² - 2xy = 6
y² + 4xy - 3x² = 6
Приравняем уравнения:
4y² - 2xy = y² + 4xy - 3x²
3x² - 6xy + 3y² = 0
x² - 2xy + y² = 0
(x - y)² = 0
x = y
x = y
y² + 4xy - 3x² = 6
x = y
x² + 4x² - 3x² = 6
x = y
2x² = 6
x = y
x² = 3
x = -√3
y = -√3
или
x = √3
y = √3
Ответ: (-√3; -√3), (√3; √3).



To solve the system of equations, we can use either the substitution method or the elimination method. I'll demonstrate how to use the substitution method here:
Step 1: Solve one of the equations for one variable in terms of the other variable. Step 2: Substitute the expression found in Step 1 into the other equation. Step 3: Solve the resulting equation for one variable. Step 4: Substitute the value found in Step 3 back into the expression from Step 1 to find the value of the other variable. Step 5: Check if the values satisfy both original equations.
Let's start with the given system:
- 3x^2 + y^2 - xy = 3
- 2x^2 - 4y^2 + 3xy = 1
Step 1: Solve equation 1 for y in terms of x: 3x^2 + y^2 - xy = 3 y^2 - xy = 3 - 3x^2 y(y - x) = 3 - 3x^2 y = (3 - 3x^2) / (y - x) ...(Equation 3)
Step 2: Substitute Equation 3 into equation 2: 2x^2 - 4[(3 - 3x^2) / (y - x)]^2 + 3x[(3 - 3x^2) / (y - x)] = 1
Step 3: Now, solve the resulting equation for x:
To make the equation more manageable, let's simplify it step by step:
a) Simplify the squared term:
4[(3 - 3x^2) / (y - x)]^2 = 4[9 - 18x^2 + 9x^4] / (y - x)^2
b) Substitute this back into the equation:
2x^2 - 4[9 - 18x^2 + 9x^4] / (y - x)^2 + 3x[(3 - 3x^2) / (y - x)] = 1
c) Now, we can observe that (y - x)^2 in the denominator of the first term can be replaced using Equation 3:
(y - x)^2 = [(3 - 3x^2) / (y - x)]^2
d) Substitute and simplify:
2x^2 - 4[9 - 18x^2 + 9x^4] / [(3 - 3x^2) / (y - x)]^2 + 3x[(3 - 3x^2) / (y - x)] = 1
2x^2 - 4[9 - 18x^2 + 9x^4] / [(3 - 3x^2) / (3 - 3x^2)] + 3x[(3 - 3x^2) / (y - x)] = 1
2x^2 - 4[9 - 18x^2 + 9x^4] + 3x[(3 - 3x^2) / (y - x)] = 1
e) Now, we need to get rid of the fraction in the last term. To do this, we can use Equation 3 to replace (3 - 3x^2) / (y - x) with y:
2x^2 - 4[9 - 18x^2 + 9x^4] + 3xy = 1 ...(Equation 4)
Step 4: We now have a single-variable equation (Equation 4) in terms of x. Let's solve it:
2x^2 - 4[9 - 18x^2 + 9x^4] + 3xy = 1
2x^2 - 36 + 72x^2 - 36x^4 + 3xy = 1
2x^2 - 36 + 72x^2 - 36x^4 + 3xy - 1 = 0
2x^2 + 72x^2 - 36x^4 + 3xy - 37 = 0
74x^2 - 36x^4 + 3xy - 37 = 0
Step 5: We need more information to solve for x. It seems we have a dependent system of equations, and we need another equation to find the values of x and y uniquely.
Please re-check the system of equations or provide additional equations to proceed further. If you have another equation to add to the system, I can help you solve it accordingly.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili