
Вопрос задан 25.07.2023 в 19:05.
Предмет Математика.
Спрашивает Іванів Божена.
1)y=4x^3/2 2)f(x)=(3x^2+1)(2x^2+3)


Ответы на вопрос

Отвечает Котик Никита.
1)
y=4x³:2
y=64x:2
y=32x
2)
f(x)=(3x²+1)×(2x²+3)
f(x)=(9x+1)×(4x+3)
y=4x³:2
y=64x:2
y=32x
2)
f(x)=(3x²+1)×(2x²+3)
f(x)=(9x+1)×(4x+3)



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
To analyze the given functions, let's break down each one and discuss their properties.
This function can be simplified to:
Properties:
- Polynomial Function: It is a polynomial function of degree 3, which means the highest power of in the equation is 3.
- Symmetry: The function is not symmetric about the y-axis or the origin since all powers of are odd (there are no even powers).
- Increasing/Decreasing: As the leading coefficient (2) is positive, the function is increasing for positive values of and decreasing for negative values of .
- Inflection Points: The function has one inflection point, as odd-degree polynomials have at most one inflection point.
- Roots: To find the roots (where ), set , which gives . So, the function intersects the x-axis at the point (0, 0).
Properties:
- Polynomial Function: It is a polynomial function of degree 4, as it is the product of two polynomials, each of degree 2.
- Symmetry: The function is not symmetric about the y-axis or the origin.
- Increasing/Decreasing: To determine the intervals of increasing and decreasing, we need to analyze the sign of , the derivative of .
- First, find :
- Set to find critical points: Divide the equation by 3: This quadratic equation has a double root:
- Now, use the first derivative test to determine increasing/decreasing intervals:
- For , , so is increasing.
- For , , so is decreasing.
- Inflection Points: To find the inflection points, we need to analyze the second derivative for possible points of inflection.
- First, find :
- Set to find possible inflection points:
- Roots: To find the roots of , set : This equation has no real roots since both factors are sums of squares, and squares are always non-negative.
Overall, the two functions have different properties. The first function is a simple cubic polynomial with one real root at the origin (0, 0). The second function is a quartic polynomial with no real roots but has one inflection point at . It also exhibits both increasing and decreasing behavior on different intervals.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili