Вопрос задан 25.07.2023 в 19:05. Предмет Математика. Спрашивает Іванів Божена.

1)y=4x^3/2 2)f(x)=(3x^2+1)(2x^2+3)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Котик Никита.
1)
y=4x³:2
y=64x:2
y=32x

2)
f(x)=(3x²+1)×(2x²+3)
f(x)=(9x+1)×(4x+3)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To analyze the given functions, let's break down each one and discuss their properties.

  1. y=4x32y = \frac{4x^3}{2}

This function can be simplified to:

y=2x3y = 2x^3

Properties:

  • Polynomial Function: It is a polynomial function of degree 3, which means the highest power of xx in the equation is 3.
  • Symmetry: The function is not symmetric about the y-axis or the origin since all powers of xx are odd (there are no even powers).
  • Increasing/Decreasing: As the leading coefficient (2) is positive, the function is increasing for positive values of xx and decreasing for negative values of xx.
  • Inflection Points: The function has one inflection point, as odd-degree polynomials have at most one inflection point.
  • Roots: To find the roots (where y=0y = 0), set 2x3=02x^3 = 0, which gives x=0x = 0. So, the function intersects the x-axis at the point (0, 0).
  1. f(x)=(3x2+1)(2x2+3)f(x) = (3x^2 + 1)(2x^2 + 3)

Properties:

  • Polynomial Function: It is a polynomial function of degree 4, as it is the product of two polynomials, each of degree 2.
  • Symmetry: The function is not symmetric about the y-axis or the origin.
  • Increasing/Decreasing: To determine the intervals of increasing and decreasing, we need to analyze the sign of f(x)f'(x), the derivative of f(x)f(x).
    • First, find f(x)f'(x): f(x)=2(3x2+3)+3(2x2+1)=12x2+12x+3f'(x) = 2(3x^2 + 3) + 3(2x^2 + 1) = 12x^2 + 12x + 3
    • Set f(x)=0f'(x) = 0 to find critical points: 12x2+12x+3=012x^2 + 12x + 3 = 0 Divide the equation by 3: 4x2+4x+1=04x^2 + 4x + 1 = 0 This quadratic equation has a double root: x=12x = -\frac{1}{2}
    • Now, use the first derivative test to determine increasing/decreasing intervals:
      • For x<12x < -\frac{1}{2}, f(x)>0f'(x) > 0, so f(x)f(x) is increasing.
      • For x>12x > -\frac{1}{2}, f(x)>0f'(x) > 0, so f(x)f(x) is decreasing.
  • Inflection Points: To find the inflection points, we need to analyze the second derivative f(x)f''(x) for possible points of inflection.
    • First, find f(x)f''(x): f(x)=24x+12f''(x) = 24x + 12
    • Set f(x)=0f''(x) = 0 to find possible inflection points: 24x+12=024x + 12 = 0 x=12x = -\frac{1}{2}
  • Roots: To find the roots of f(x)f(x), set f(x)=0f(x) = 0: (3x2+1)(2x2+3)=0(3x^2 + 1)(2x^2 + 3) = 0 This equation has no real roots since both factors are sums of squares, and squares are always non-negative.

Overall, the two functions have different properties. The first function is a simple cubic polynomial with one real root at the origin (0, 0). The second function is a quartic polynomial with no real roots but has one inflection point at x=12x = -\frac{1}{2}. It also exhibits both increasing and decreasing behavior on different intervals.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос