Вопрос задан 24.07.2023 в 20:16. Предмет Математика. Спрашивает Сінчук Рома.

Иследовать функцию y=x-2/x+1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Волков Стас.

Ответ:


Пошаговое объяснение:

y"=(x+1-(x-2))/(x+1)^2=3/(x+1)^2,   производная>0, значит ф-я возрастает на (-~;-1) и (-1;+~)  , обл. опр. все знач-я кроме х=1  ,мн-во значений (-~;1) и (1; +~) , точек max и min нет. у=(х+1-3)/(х+1)=1 -   3/х+1-преобразование ф-ции,гипербола

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To explore the function y=x2x+1y = \frac{x - 2}{x + 1}, we can analyze its properties, graph it, and examine some key points.

  1. Domain and Vertical Asymptote: The function is defined for all real values of xx except when the denominator x+1x + 1 is equal to zero, which leads to division by zero. So, the domain of the function is all real numbers except x=1x = -1. At x=1x = -1, there is a vertical asymptote, which means the function approaches infinity or negative infinity as xx approaches -1.

  2. Horizontal Asymptote: To find the horizontal asymptote, we can analyze the behavior of the function as xx approaches positive or negative infinity. The function can be rewritten as y=xx+12x+1y = \frac{x}{x+1} - \frac{2}{x+1}. As xx becomes very large (positive or negative), the xx terms dominate, and the function approaches the value y=1y = 1 since the 2x+1-\frac{2}{x+1} term becomes negligible compared to the xx+1\frac{x}{x+1} term. Therefore, the function has a horizontal asymptote at y=1y = 1.

  3. x-intercept: To find the x-intercept, we set yy equal to zero and solve for xx: 0=x2x+10 = \frac{x - 2}{x + 1}. The numerator x2x - 2 can only be equal to zero when x=2x = 2. However, x=2x = 2 is not a valid x-value for the function since it would lead to division by zero in the denominator. Therefore, the function has no x-intercept.

  4. y-intercept: To find the y-intercept, we set xx equal to zero and calculate the value of yy: y=020+1=2y = \frac{0 - 2}{0 + 1} = -2. So, the y-intercept is at the point (0, -2).

  5. Critical Points: Critical points occur when the derivative of the function is equal to zero or undefined. Let's find the derivative of the function and then solve for xx when the derivative is equal to zero.

y=x2x+1y = \frac{x - 2}{x + 1}

y=(x+1)(1)(x2)(1)(x+1)2=3(x+1)2y' = \frac{(x + 1)(1) - (x - 2)(1)}{(x + 1)^2} = \frac{3}{(x + 1)^2}

The derivative is never equal to zero, so there are no critical points.

Now, let's graph the function to visually understand its behavior:

Graph of the function

As you can see from the graph, the function has a vertical asymptote at x=1x = -1 and a horizontal asymptote at y=1y = 1. The function approaches the horizontal asymptote as xx becomes large in both the positive and negative directions.

Overall, the function y=x2x+1y = \frac{x - 2}{x + 1} has no x-intercept, a y-intercept at (0, -2), a vertical asymptote at x=1x = -1, and a horizontal asymptote at y=1y = 1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос