
Иследовать функцию y=x-2/x+1


Ответы на вопрос

Ответ:
Пошаговое объяснение:
y"=(x+1-(x-2))/(x+1)^2=3/(x+1)^2, производная>0, значит ф-я возрастает на (-~;-1) и (-1;+~) , обл. опр. все знач-я кроме х=1 ,мн-во значений (-~;1) и (1; +~) , точек max и min нет. у=(х+1-3)/(х+1)=1 - 3/х+1-преобразование ф-ции,гипербола



To explore the function , we can analyze its properties, graph it, and examine some key points.
Domain and Vertical Asymptote: The function is defined for all real values of except when the denominator is equal to zero, which leads to division by zero. So, the domain of the function is all real numbers except . At , there is a vertical asymptote, which means the function approaches infinity or negative infinity as approaches -1.
Horizontal Asymptote: To find the horizontal asymptote, we can analyze the behavior of the function as approaches positive or negative infinity. The function can be rewritten as . As becomes very large (positive or negative), the terms dominate, and the function approaches the value since the term becomes negligible compared to the term. Therefore, the function has a horizontal asymptote at .
x-intercept: To find the x-intercept, we set equal to zero and solve for : . The numerator can only be equal to zero when . However, is not a valid x-value for the function since it would lead to division by zero in the denominator. Therefore, the function has no x-intercept.
y-intercept: To find the y-intercept, we set equal to zero and calculate the value of : . So, the y-intercept is at the point (0, -2).
Critical Points: Critical points occur when the derivative of the function is equal to zero or undefined. Let's find the derivative of the function and then solve for when the derivative is equal to zero.
The derivative is never equal to zero, so there are no critical points.
Now, let's graph the function to visually understand its behavior:
As you can see from the graph, the function has a vertical asymptote at and a horizontal asymptote at . The function approaches the horizontal asymptote as becomes large in both the positive and negative directions.
Overall, the function has no x-intercept, a y-intercept at (0, -2), a vertical asymptote at , and a horizontal asymptote at .


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili