
Вопрос задан 24.07.2023 в 10:32.
Предмет Математика.
Спрашивает Chugunov Kirill.
Найдите произведение комплексных чисел z1=3-5i; z2=2+ 8i


Ответы на вопрос

Отвечает Орловская Юлия.
Ответ:
46 + 14i
Пошаговое объяснение:
(3 - 5i) · (2 + 8i) = 3·2 + 3·8i - 5·2i - 5·8i2 = 6 + 24i - 10i + 40 = 46 + 14i



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Чтобы найти произведение комплексных чисел z1 и z2, умножим их следующим образом:
z1 * z2 = (3 - 5i) * (2 + 8i)
Для выполнения умножения комплексных чисел применим правило распределения (дистрибутивности) аналогично умножению двух скобок:
z1 * z2 = 3 * 2 + 3 * 8i - 5i * 2 - 5i * 8i
Теперь выполним умножение чисел:
z1 * z2 = 6 + 24i - 10i - 40i^2
У комплексных чисел i^2 равно -1, поэтому:
z1 * z2 = 6 + 24i - 10i - 40(-1)
Упростим выражение:
z1 * z2 = 6 + 24i - 10i + 40
Итак, произведение комплексных чисел z1 и z2 равно:
z1 * z2 = 46 + 14i


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili