
Найдите значения выражения х-у, если х^3-y^3=45 и xy*(x-y)=6


Ответы на вопрос

{ху*(х-у)=6
(х-у)(х²+ху+у²)=45
(х-у)((х-у)²+3ху)=45
((х-у)³+(х-у)*3ху=45
(х-у)³+3*6=45
(х-у)³=45-18
(х-у)³=27
(х-у)³=3³
х-у=3



Для решения данной системы уравнений, можно воспользоваться методом подстановки или методом исключения переменных. Давайте воспользуемся методом исключения переменных.
Исходные уравнения:
Для начала решим второе уравнение относительно :
Теперь, решим первое уравнение относительно :
Теперь используем полученные значения, чтобы выразить :
Теперь подставим значение в уравнение (2):
Умножим обе стороны уравнения на для упрощения:
Теперь рассмотрим уравнение (1) и заменим на :
Таким образом, уравнение (1) верно, и у нас есть еще одно уравнение, которое содержит только :
Теперь решим это уравнение относительно :
Приведем все слагаемые на одну сторону:
Теперь, это квадратное уравнение относительно . Решим его, чтобы найти значения :
Таким образом, у нас два значения :
Теперь, чтобы найти значения и , мы можем использовать уравнение (2):
Для первого значения :