
получить ответ на задачу: В заседании участвовало 10 рыцарей и лжецов. корреспондент стал задавать
им по очереди один и тот же вопрос: "Если не считать Вас, то кого больше среди остальных участников - рыцарей или лжецов? Все стали отвечать одно и то же - "Лжецов больше". После какого наименьшего числа таких ответов он мог остановить опрос, узнав с гарантией, сколько рыцарей и лжецов?

Ответы на вопрос

Ответ:
6 вопросов
Пошаговое объяснение:
всего 10 человек
что бы получить всегда ответ «Лжецов больше», нужно что бы было 5Р+5Л
спрашиваем рыцаря:«Если не считать Вас, то кого больше среди остальных участников – рыцарей или лжецов?» Ответ: " среди оставшихся 9 больше лжецов (их5)-- Говорит правду
спрашиваем лжеца:«Если не считать Вас, то кого больше среди остальных участников – рыцарей или лжецов?» Ответ: " среди оставшихся 9 больше лжецов (но их только 4, а 5 рыцарей)-- Врет
для установления правды нужно опросить половину участников + 1 участник, т.е спросить у 6 человек ((10:2)+1=6)
после 6 вопросов, можно точно определить, что в заседании участвовало 5Р и 5Л



Давайте разберемся в этой задаче. Поскольку все участники отвечают, что лжецов больше, значит, каждый участник может быть либо лжецом, либо рыцарем, так как утверждение "лжецов больше" верно для обоих категорий.
Предположим, что сначала все 10 участников являются лжецами. Затем опросителю необходимо обратить внимание на изменение ответов. Если был задан вопрос первому участнику, который является лжецом, то он бы ответил правду и сказал бы "Рыцарей больше". Это противоречит ответу "Лжецов больше", который он слышит от всех участников, поэтому первый участник должен быть рыцарем.
Теперь предположим, что первый участник - рыцарь. Тогда он бы ответил правду и сказал бы "Лжецов больше". Опросителю нужно проверить, правдив ли ответ. Если был задан вопрос второму участнику, и если он тоже является рыцарем, то он тоже ответил бы правду и сказал бы "Лжецов больше". Однако это противоречит ответу "Лжецов больше", который он слышит от всех участников. Значит, второй участник - лжец.
Мы видим, что нам необходимо, чтобы рыцарь следовал за лжецом. Теперь, чтобы узнать минимальное число таких ответов, при котором мы можем определить, сколько рыцарей и лжецов, нужно рассмотреть все возможные комбинации, пока рыцарь не последует за лжецом:
- ЛЛЛЛР - После первых 5 ответов опросителя ответ будет 4 лжеца и 1 рыцарь.
- ЛЛЛРЛ - После первых 4 ответов опросителя ответ будет 3 лжеца и 1 рыцарь.
- ЛЛРЛЛ - После первых 3 ответов опросителя ответ будет 2 лжеца и 1 рыцарь.
- ЛРЛЛЛ - После первых 2 ответов опросителя ответ будет 1 лжец и 1 рыцарь.
Здесь мы получили ответ после 2-х вопросов, когда 1 лжец и 1 рыцарь. Таким образом, минимальное число таких ответов, при котором опроситель может определить, сколько рыцарей и лжецов, составляет 2.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili