
При g′(1) g(x)=48 * ⁸√x * ¹²√x


Ответы на вопрос

g'(x) = 48*((1/8)*x^(-7/8)*¹²√x + ⁸√x*(1/12)*x^(-11/12))



To find the value of g'(1), we need to differentiate the function g(x) with respect to x and then evaluate the derivative at x = 1. Let's break down the function g(x) and differentiate it step by step.
Given function: g(x) = 48 * ⁸√x * ¹²√x
To differentiate g(x), we can use the product rule and chain rule.
Apply the chain rule for both the eighth root and twelfth root terms: d/dx [⁸√x] = (1/8) * x^((1/8) - 1) = (1/8) * x^(-7/8) = 1/(8 * ⁸√x^7) d/dx [¹²√x] = (1/12) * x^((1/12) - 1) = (1/12) * x^(-11/12) = 1/(12 * ¹²√x^11)
Apply the product rule: [g(x) = 48 * ⁸√x * ¹²√x] g'(x) = 48 * [d/dx (⁸√x)] * ¹²√x + 48 * ⁸√x * [d/dx (¹²√x)]
Substitute the derivatives: g'(x) = 48 * (1/(8 * ⁸√x^7)) * ¹²√x + 48 * ⁸√x * (1/(12 * ¹²√x^11))
Now, we want to find g'(1), so let's plug in x = 1:
g'(1) = 48 * (1/(8 * ⁸√1^7)) * ¹²√1 + 48 * ⁸√1 * (1/(12 * ¹²√1^11))
Since any non-zero number raised to the power of 0 is equal to 1, we can simplify:
g'(1) = 48 * (1/8) + 48 * (1/12)
Now, find the common denominator (24) for both terms:
g'(1) = (48 * 3 + 48 * 2) / 24 g'(1) = (144 + 96) / 24 g'(1) = 240 / 24 g'(1) = 10
Therefore, the value of g'(1) is 10.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili