Вопрос задан 22.07.2023 в 08:36. Предмет Математика. Спрашивает Огалев Олег.

Библиотечный фонд включает в себя произведения печати и электрон-ные документы. Если бы число

произведений печати сократилось втрое, то число единиц библиотечного фонда уменьшилось бы на 28%. На сколько процентов увеличилось бы число единиц библиотечного фонда, если число электронных документов выросло бы в 2 раза? ПОЖАЛУЙСТА РЕШИТЕ ЗАДАЧУ ДАМ 65 БАЛОВ
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Свиридов Влад.

28%*2=56%печатного фонда было в библиотеке

100%-56%=44%

44% умножили вдвое, т.е. число электронных документов возросло на 44%

ОТВЕТ: на 44%

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим эту задачу шаг за шагом.

Обозначим: Пусть Х - исходное количество произведений печати, Y - исходное количество электронных документов, T - исходное общее количество единиц библиотечного фонда.

Условие задачи гласит, что если бы число произведений печати сократилось втрое, то число единиц библиотечного фонда уменьшилось бы на 28%.

Это можно представить математически следующим образом:

  1. Если бы произведений печати стало (1/3) * Х, то общее число единиц было бы 0.72 * Т:

(1/3) * Х + Y = 0.72 * T ...(1)

Затем, условие задачи гласит, что если бы число электронных документов выросло бы в 2 раза, то общее число единиц библиотечного фонда увеличилось бы на некоторый процент.

  1. Если бы количество электронных документов стало 2 * Y, то общее число единиц было бы (100 + P)% * Т, где P - процент увеличения числа единиц.

2 * Y + (1/3) * Х = (100 + P)% * T ...(2)

Теперь у нас есть система уравнений (1) и (2), и мы можем ее решить.

  1. Из уравнения (1) найдем Х:

(1/3) * Х = 0.72 * T - Y Х = (0.72 * T - Y) * 3

  1. Подставим найденное значение Х в уравнение (2):

2 * Y + (0.72 * T - Y) * 3 = (100 + P)% * T

Теперь решим уравнение относительно Т:

2Y + 2.16T - 3Y = (100 + P)% * T

-Y = (100 + P)% * T - 2Y Y = (2 - (100 + P)%) * T

Теперь, чтобы найти P (процент увеличения числа единиц), сравним начальное количество единиц T и конечное количество, когда число электронных документов увеличится в 2 раза:

T (начальное) = Х + Y T (конечное) = (0.72 * T - Y) * 3 + 2 * Y

T (начальное) = T (конечное)

Х + Y = (0.72 * T - Y) * 3 + 2 * Y

Теперь подставим значение Y, которое мы нашли ранее:

Х + (2 - (100 + P)%) * T = (0.72 * T - (2 - (100 + P)%) * T) * 3 + 2 * (2 - (100 + P)%) * T

Х + (2 - (100 + P)%) * T = (2.16 - 1.44 * (100 + P)%) * T + 4 * (2 - (100 + P)%) * T

Теперь сократим на T:

Х + 2 - (100 + P)% = 2.16 - 1.44 * (100 + P)% + 4 * (2 - (100 + P)%)

Х - (100 + P)% = 2.16 - 1.44 * (100 + P)% + 8 - 4 * (100 + P)%

Теперь выразим P:

P = (Х + 2 - 2.16 + 8) / (1.44 - 4 + 100 - 100) = (Х + 8.84) / (-2.56)

Теперь, чтобы получить ответ в процентах, нужно умножить P на 100:

P = ((Х + 8.84) / (-2.56)) * 100

Таким образом, вы получите значение P в процентах, которое показывает, на сколько процентов увеличится число единиц библиотечного фонда при увеличении числа электронных документов в 2 раза.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос