Вопрос задан 18.07.2023 в 01:36. Предмет Математика. Спрашивает Белаев Никита.

У равнобедренной трапеции диагонали перпендикулярны. Вычисли площадь трапеции, если сторона равна =

15 см, диагональ = 20 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Баширова Карина.

Ответ:

200 см²

Пошаговое объяснение:  У равнобедренной трапеции диагонали равны,  каждая диагональ делит трапецию на два треугольника.

SΔ = 1/2 * основание * высоту

d - основание каждого Δ,

h₁  и  h₂ - высоты, причём h₁ + h₂ = d.

Тогда  

S трап. = SΔ₁ + SΔ₂ = 1/2 * d * h₁ + 1/2 * d * h₂ =1/2 d * (h₁ + h₂) =

= 1/2 d * d = 1/2 d².

S трап. = 1/2 * 20² = 1/2 * 400 = 200 (см²).

Площадь данной трапеции (с такими диагоналями) не зависит от длин ее сторон.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, давайте обозначим данную равнобедренную трапецию следующим образом:

Пусть AB и CD - основания трапеции (где AB длина большего основания, а CD - меньшего), а EF и AD - диагонали. Так как трапеция равнобедренная, то диагонали EF и AD перпендикулярны друг другу.

Мы знаем, что одна из диагоналей (AD) равна 20 см. Обозначим другую сторону трапеции BC. Так как трапеция равнобедренная, BC = AD = 20 см.

Теперь у нас есть все известные стороны трапеции:

AB = 15 см (сторона трапеции) BC = AD = 20 см (другая сторона трапеции, равная диагонали)

Чтобы вычислить площадь трапеции, мы используем следующую формулу:

Площадь трапеции = ((сумма длин оснований) * высота) / 2

Высоту трапеции (h) мы можем найти, используя теорему Пифагора для прямоугольного треугольника AEF:

h^2 + (AB - BC)^2 = EF^2 h^2 + (15 см - 20 см)^2 = 20 см^2 h^2 + (-5 см)^2 = 400 см^2 h^2 + 25 см^2 = 400 см^2 h^2 = 400 см^2 - 25 см^2 h^2 = 375 см^2 h = √375 см ≈ 19.36 см

Теперь, подставляя значения в формулу для площади:

Площадь трапеции = ((AB + BC) * h) / 2 Площадь трапеции = ((15 см + 20 см) * 19.36 см) / 2 Площадь трапеции = (35 см * 19.36 см) / 2 Площадь трапеции ≈ 676 см^2

Ответ: площадь равнобедренной трапеции составляет приблизительно 676 квадратных сантиметров.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос