
1)(-3+х)*х=0 2)|х+1|*(|х|+1)=0 3)|-х-1|*(|х|-1)=0 4)-|-х|*(2-х)=0 5)(|х|+1)*(2-х)=0


Ответы на вопрос

Ответ:
1) х = 3 или х = 0; 2) х = - 1; 3) х = - 1 или х = 1; 4) х = 0 или х = 2; 5) х = 2.
Пошаговое объяснение:
1)(- 3 + х)*х = 0
х = 0
или
- 3 + х = 0
х = 0
или
х = 3
2)|х + 1|*(|х| + 1) = 0
|х + 1| = 0
или
|х| + 1 = 0
х = - 1
Второе равенство не имеет решения, потому что требуется отрицательный икс, а модуль не даст минусу появиться.
3)|- х - 1|*(|х| - 1) = 0
|- х - 1| = 0
или
|х| - 1 = 0
х = - 1
или
х = 1 и х = -1
4)-|-х|*(2 - х) = 0
х = 0
или
2 - х = 0
х = 0
или
х = 2
5)(|х| + 1)*(2 - х) = 0
|х| + 1 = 0
или
2 - х = 0
У первого равенства решения нет
х = 2



Let's solve each equation step by step:
- (-3 + x) * x = 0
To find the solutions, we set each factor equal to zero and solve for x separately:
-3 + x = 0 => x = 3
x = 0
So the solutions for this equation are x = 3 and x = 0.
- |x + 1| * (|x| + 1) = 0
For the product to be zero, at least one of the factors must be zero. Let's consider both cases:
Case 1: |x + 1| = 0
If |x + 1| = 0, it means that x + 1 = 0. Solving for x, we have:
x + 1 = 0 => x = -1
Case 2: |x| + 1 = 0
If |x| + 1 = 0, it means that |x| = -1, which is not possible since the absolute value of any number is always non-negative. Therefore, there are no solutions for this case.
So the only solution for this equation is x = -1.
- |-x - 1| * (|x| - 1) = 0
Similar to the previous equation, we consider both cases:
Case 1: |-x - 1| = 0
If |-x - 1| = 0, it means that -x - 1 = 0. Solving for x, we have:
-x - 1 = 0 => x = -1
Case 2: |x| - 1 = 0
If |x| - 1 = 0, it means that |x| = 1. Solving for x, we have:
x = 1 or x = -1
So the solutions for this equation are x = -1, x = 1, and x = -1.
- -|-x| * (2 - x) = 0
Again, we consider each factor separately:
Case 1: -|-x| = 0
If -|-x| = 0, it means that |-x| = 0. The absolute value of any number is non-negative, so the only solution is x = 0.
Case 2: 2 - x = 0
Solving for x, we have:
2 - x = 0 => x = 2
So the solutions for this equation are x = 0 and x = 2.
- (|x| + 1) * (2 - x) = 0
We set each factor equal to zero and solve for x separately:
Case 1: |x| + 1 = 0
If |x| + 1 = 0, it means that |x| = -1, which is not possible. Therefore, there are no solutions for this case.
Case 2: 2 - x = 0
Solving for x, we have:
2 - x = 0 => x = 2
So the only solution for this equation is x = 2.
To summarize the solutions for each equation:
- x = 3, x = 0
- x = -1
- x = -1, x = 1
- x = 0, x = 2
- x = 2


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili