
В группе из 25 стрелков имеются 5 отличных, 12 хороших и 8 посредственных стрелков. Вероятность
попадания в цель при одном выстреле для отличного стрелка равна 0.85, для хорошего – 0.7, для посредственного – 0.6. Найдите вероятность того, что наудачу выбранный стрелок промахнется.

Ответы на вопрос

Ответ:
1) В группе из 20 стрелков имеются 4 отличных, 10 хороших и 6 посредственных стрелков. Вероятность попадания в цель при одном выстреле для отличного стрелка равна 0,9 ,для хорошего – 0,7 ,для посредственного – 0,5. На линию огня вызываются наугад два стрелка. Они производят по одному выстрелу. Найти вероятность того, что стрелки попадут в цель.
2) какие возможные гипотезы о двух стрелках, вызванных на линию огня, и чему равны их вероятности?
3) чему равны условные вероятности поражения цели обоими стрелками при выполнении каждой из гипотез?
0



Для решения данной задачи нужно рассмотреть вероятности промаха для каждой группы стрелков и взвесить их на основе числа стрелков в каждой группе.
Из условия задачи известно, что имеется 5 отличных стрелков с вероятностью попадания 0.85, 12 хороших стрелков с вероятностью попадания 0.7 и 8 посредственных стрелков с вероятностью попадания 0.6.
Вероятность попадания равна 1 минус вероятность промаха. Таким образом, вероятность промаха для отличного стрелка будет равна 1 - 0.85 = 0.15, для хорошего стрелка - 1 - 0.7 = 0.3, а для посредственного - 1 - 0.6 = 0.4.
Далее нужно взвесить вероятности промаха для каждой группы стрелков на основе числа стрелков в каждой группе.
Количество отличных стрелков: 5 Количество хороших стрелков: 12 Количество посредственных стрелков: 8
Общее число стрелков в группе: 25
Вероятность выбрать отличного стрелка и промахнуться: P(отличный и промахнуться) = (число отличных стрелков / общее число стрелков) * вероятность промаха для отличного стрелка P(отличный и промахнуться) = (5 / 25) * 0.15 = 0.03
Аналогично можно поступить для хороших и посредственных стрелков:
Вероятность выбрать хорошего стрелка и промахнуться: P(хороший и промахнуться) = (число хороших стрелков / общее число стрелков) * вероятность промаха для хорошего стрелка P(хороший и промахнуться) = (12 / 25) * 0.3 = 0.144
Вероятность выбрать посредственного стрелка и промахнуться: P(посредственный и промахнуться) = (число посредственных стрелков / общее число стрелков) * вероятность промаха для посредственного стрелка P(посредственный и промахнуться) = (8 / 25) * 0.4 = 0.128
Наконец, найдем вероятность того, что наудачу выбранный стрелок промахнется, сложив вероятности промаха для каждой группы стрелков:
P(промахнуться) = P(отличный и промахнуться) + P(хороший и промахнуться) + P(посредственный и промахнуться) P(промахнуться) = 0.03 + 0.144 + 0.128 = 0.302
Таким образом, вероятность того, что наудачу выбранный стрелок промахнется, составляет 0.302 или 30.2%.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili