
Sinxcos2x+cosxsin2x>1/2


Ответы на вопрос

Ответ:



To solve the inequality sin(x)cos(2x) + cos(x)sin(2x) > 1/2, we can simplify the left-hand side and analyze the resulting expression.
Using the angle addition formula for sine and cosine, we have:
sin(x)cos(2x) + cos(x)sin(2x) = sin(x)(cos(x)cos(x) - sin(x)sin(x)) + cos(x)(sin(x)cos(x) + cos(x)sin(x)) = sin(x)cos^2(x) - sin^2(x)cos(x) + cos(x)sin^2(x) + cos^2(x)sin(x) = sin(x)cos^2(x) + cos(x)sin^2(x) - sin^2(x)cos(x) + cos^2(x)sin(x) = (sin(x)cos^2(x) + cos(x)sin^2(x)) + (cos^2(x)sin(x) - sin^2(x)cos(x)) = sin(x)(cos^2(x) + sin^2(x)) + cos(x)(cos^2(x) - sin^2(x)) = sin(x) + cos(x)(cos^2(x) - sin^2(x))
Now, let's simplify further using the identity cos^2(x) - sin^2(x) = cos(2x):
sin(x) + cos(x)(cos^2(x) - sin^2(x)) = sin(x) + cos(x)cos(2x)
Now, the inequality becomes:
sin(x) + cos(x)cos(2x) > 1/2
To solve this inequality, we need to consider different cases and analyze them separately.
Case 1: 0 < x < π/2 (i.e., x is in the first quadrant)
In this case, both sin(x) and cos(x) are positive. We can rewrite the inequality as:
sin(x) + cos(x)cos(2x) > 1/2
Since both sin(x) and cos(x) are positive, we have sin(x) > 0 and cos(x) > 0. Therefore, the inequality reduces to:
sin(x) + cos(x)cos(2x) > 1/2
Case 2: π/2 < x < π (i.e., x is in the second quadrant)
In this case, sin(x) is positive, but cos(x) is negative. We can rewrite the inequality as:
sin(x) + cos(x)cos(2x) > 1/2
Since sin(x) > 0 and cos(x) < 0, the inequality becomes:
sin(x) + cos(x)cos(2x) > 1/2
Case 3: π < x < 3π/2 (i.e., x is in the third quadrant)
In this case, both sin(x) and cos(x) are negative. We can rewrite the inequality as:
sin(x) + cos(x)cos(2x) > 1/2
Since both sin(x) and cos(x) are negative, we have sin(x) < 0 and cos(x) < 0. Therefore, the inequality reduces to:
sin(x) + cos(x)cos(2x) > 1/2
Case 4: 3π/2 < x < 2π (i.e., x is in the fourth quadrant)
In this case, sin(x) is negative, but cos(x) is positive. We can rewrite the inequality as:
sin(x) + cos(x)cos(2x) > 1/2
Since sin(x) < 0 and cos(x) > 0, the inequality becomes:
sin(x) + cos(x)cos(2x) > 1/2
By analyzing the inequality in each case, we can see that the solution will depend on the specific values of x within each interval. Further analysis or numerical methods may be required to determine the exact range of x for which the inequality holds true.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili